Tinkering

community

AI & ML interests

None defined yet.

Recent Activity

Tinkering's activity

Narsil 
posted an update 23 days ago
view post
Post
1030
Performance leap: TGI v3 is out. Processes 3x more tokens, 13x faster than vLLM on long prompts. Zero config !



3x more tokens.

By reducing our memory footprint, we’re able to ingest many more tokens and more dynamically than before. A single L4 (24GB) can handle 30k tokens on llama 3.1-8B, while vLLM gets barely 10k. A lot of work went into reducing the footprint of the runtime and its effect are best seen on smaller constrained environments.
13x faster

On long prompts (200k+ tokens) conversation replies take 27.5s in vLLM, while it takes only 2s in TGI. How so ? We keep the initial conversation around, so when a new reply comes in, we can answer almost instantly. The overhead of the lookup is ~5us. Thanks @Dani ël de Kok for the beast data structure.
Zero config

That’s it. Remove all the flags your are using and you’re likely to get the best performance. By evaluating the hardware and model, TGI carefully selects automatic values to give best performance. In production, we don’t have any flags anymore in our deployments. We kept all existing flags around, they may come in handy in niche scenarios.

Read more: https://huggingface.co/docs/text-generation-inference/conceptual/chunking
Narsil 
posted an update 8 months ago
Narsil 
posted an update 8 months ago
Molbap 
posted an update 9 months ago
view post
Post
5089
🚀🚀 Exciting times for the document AI community!

We're thrilled to announce the release of some of the largest OCR datasets available to the public.
🔥 With over 26 million pages , 18 billion text tokens, and 6TB of data, these resources are a significant leap forward for document AI research.

Here's how to access these datasets quickly:

from datasets import load_dataset

pdfa_dataset = load_dataset('pixparse/pdfa-eng-wds', streaming=True)
IDL_dataset = load_dataset('pixparse/idl-wds', streaming=True)

This enables you to stream them directly, integrating seamlessly with your projects using the Hugging Face datasets library. On the hub, you can find them here:

pixparse/pdfa-eng-wds
pixparse/idl-wds

For lean data loading, the new [chug](https://github.com/huggingface/chug) library offers a solution with pdf decoding:


import chug

task_cfg = chug.DataTaskDocReadCfg(
    page_sampling='all',
)
data_cfg = chug.DataCfg(
    source='pixparse/pdfa-eng-wds',
    split='train',
    batch_size=None,
    format='hfids',
    num_workers=0,
)
data_loader = chug.create_loader(
    data_cfg,
    task_cfg,
)
sample = next(iter(data_loader))



We owe a huge thank you to Peter Wyatt, Kate Tasker, Rachel Taketa, Ali Furkan Biten, Ruben Tito, and their colleagues for their contributions. Their work putting these datasets together has been invaluable. 🤗

Looking Ahead:

We're on a mission to enhance document AI capabilities, and these datasets are just the beginning. With your engagement and innovation, we're confident in the community's ability to develop robust OCR solutions. We encourage you to explore these datasets, experiment with the code, and contribute to the collective progress in document AI.

For detailed information on usage and licensing, please refer to the dataset cards on the Hugging Face hub.
·