Personal Coding Assistant

AI & ML interests

Code language models.

Recent Activity

coding-assistant-custom's activity

sayakpaulย 
posted an update 4 days ago
view post
Post
1474
In the past seven days, the Diffusers team has shipped:

1. Two new video models
2. One new image model
3. Two new quantization backends
4. Three new fine-tuning scripts
5. Multiple fixes and library QoL improvements

Coffee on me if someone can guess 1 - 4 correctly.
  • 1 reply
ยท
sayakpaulย 
posted an update 13 days ago
view post
Post
2020
Introducing a high-quality open-preference dataset to further this line of research for image generation.

Despite being such an inseparable component for modern image generation, open preference datasets are a rarity!

So, we decided to work on one with the community!

Check it out here:
https://huggingface.co/blog/image-preferences
ยท
sayakpaulย 
posted an update 13 days ago
view post
Post
2087
The Control family of Flux from @black-forest-labs should be discussed more!

It enables structural controls like ControlNets while being significantly less expensive to run!

So, we're working on a Control LoRA training script ๐Ÿค—

It's still WIP, so go easy:
https://github.com/huggingface/diffusers/pull/10130
sayakpaulย 
posted an update 23 days ago
sayakpaulย 
posted an update about 1 month ago
view post
Post
2593
It's been a while we shipped native quantization support in diffusers ๐Ÿงจ

We currently support bistandbytes as the official backend but using others like torchao is already very simple.

This post is just a reminder of what's possible:

1. Loading a model with a quantization config
2. Saving a model with quantization config
3. Loading a pre-quantized model
4. enable_model_cpu_offload()
5. Training and loading LoRAs into quantized checkpoints

Docs:
https://huggingface.co/docs/diffusers/main/en/quantization/bitsandbytes
  • 1 reply
ยท
chansungย 
posted an update about 1 month ago
view post
Post
1795
๐ŸŽ™๏ธ Listen to the audio "Podcast" of every single Hugging Face Daily Papers.

Now, "AI Paper Reviewer" project can automatically generates audio podcasts on any papers published on arXiv, and this is integrated into the GitHub Action pipeline. I sounds pretty similar to hashtag#NotebookLM in my opinion.

๐ŸŽ™๏ธ Try out yourself at https://deep-diver.github.io/ai-paper-reviewer/

This audio podcast is powered by Google technologies: 1) Google DeepMind Gemini 1.5 Flash model to generate scripts of a podcast, then 2) Google Cloud Vertex AI's Text to Speech model to synthesize the voice turning the scripts into the natural sounding voices (with latest addition of "Journey" voice style)

"AI Paper Reviewer" is also an open source project. Anyone can use it to build and own a personal blog on any papers of your interests. Hence, checkout the project repository below if you are interested in!
: https://github.com/deep-diver/paper-reviewer

This project is going to support other models including open weights soon for both text-based content generation and voice synthesis for the podcast. The only reason I chose Gemini model is that it offers a "free-tier" which is enough to shape up this projects with non-realtime batch generations. I'm excited to see how others will use this tool to explore the world of AI research, hence feel free to share your feedback and suggestions!
  • 2 replies
ยท
chansungย 
posted an update about 2 months ago
view post
Post
4631
Effortlessly stay up-to-date with AI research trends using a new AI tool, "AI Paper Reviewer" !!

It analyzes a list of Hugging Face Daily Papers(w/ @akhaliq ) and turn them into insightful blog posts. This project leverages Gemini models (1.5 Pro, 1.5 Flash, and 1.5 Flash-8B) for content generation and Upstage Document Parse for parsing the layout and contents.
blog link: https://deep-diver.github.io/ai-paper-reviewer/

Also, here is the link of GitHub repository for parsing and generating pipeline. By using this, you can easily build your own GitHub static pages based on any arXiv papers with your own interest!
: https://github.com/deep-diver/paper-reviewer
sayakpaulย 
posted an update 3 months ago
view post
Post
2752
Did some little experimentation to resize pre-trained LoRAs on Flux. I explored two themes:

* Decrease the rank of a LoRA
* Increase the rank of a LoRA

The first one is helpful in reducing memory requirements if the LoRA is of a high rank, while the second one is merely an experiment. Another implication of this study is in the unification of LoRA ranks when you would like to torch.compile() them.

Check it out here:
sayakpaul/flux-lora-resizing
  • 1 reply
ยท
sayakpaulย 
posted an update 4 months ago
sayakpaulย 
posted an update 5 months ago
view post
Post
4477
Flux.1-Dev like images but in fewer steps.

Merging code (very simple), inference code, merged params: sayakpaul/FLUX.1-merged

Enjoy the Monday ๐Ÿค—
ยท
sayakpaulย 
posted an update 5 months ago
view post
Post
3793
With larger and larger diffusion transformers coming up, it's becoming increasingly important to have some good quantization tools for them.

We present our findings from a series of experiments on quantizing different diffusion pipelines based on diffusion transformers.

We demonstrate excellent memory savings with a bit of sacrifice on inference latency which is expected to improve in the coming days.

Diffusers ๐Ÿค Quanto โค๏ธ

This was a juicy collaboration between @dacorvo and myself.

Check out the post to learn all about it
https://huggingface.co/blog/quanto-diffusers
ยท
sayakpaulย 
posted an update 6 months ago
sayakpaulย 
posted an update 6 months ago
view post
Post
3130
What is your favorite part of our Diffusers integration of Stable Diffusion 3?

My personal favorite is the ability to run it on a variety of different GPUs with minimal code changes.

Learn more about them here:
https://huggingface.co/blog/sd3