|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import Optional, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from .utils import StrEnum |
|
|
|
from .configuration_bert import FlexBertConfig |
|
from .normalization import RMSNorm |
|
|
|
__all__ = ["init_weights", "ModuleType", "InitFnType"] |
|
|
|
|
|
class InitFnType(StrEnum): |
|
mitchell = "mitchell" |
|
""" |
|
The strategy suggested to us by Mitchell Wortsman from UW. |
|
This uses a truncated normal distribution with an adaptive standard deviation that depends |
|
on the size of the weights as well as the depth of the layer. |
|
""" |
|
|
|
normal = "normal" |
|
""" |
|
All weights are initialized from the same normal distribution. |
|
""" |
|
|
|
default = "default" |
|
""" |
|
All weights are initialized with the default HuggingFace Bert method. Set init_std=0.02 to match. |
|
""" |
|
|
|
kaiming_normal = "kaiming_normal" |
|
""" |
|
All weights are initialized with the Kaiming method from a normal distribution. |
|
Note this currently won't work with FSDP. |
|
""" |
|
|
|
fan_in = "fan_in" |
|
""" |
|
"Fan-in variance scaling", i.e. normal with a standard deviation of ``1/sqrt(d_in)`` where ``d_in`` |
|
is the input dimensionality of the kernel. |
|
""" |
|
|
|
full_megatron = "full_megatron" |
|
""" |
|
This is what metaseq calls "full megatron init". It is the init used for Llama 2. |
|
""" |
|
|
|
|
|
class ModuleType(StrEnum): |
|
in_module = "in" |
|
out_module = "out" |
|
emb = "emb" |
|
final_out = "final_out" |
|
|
|
|
|
def init_weights( |
|
config: FlexBertConfig, |
|
module: Union[nn.Linear, nn.Embedding], |
|
layer_dim: Optional[int] = None, |
|
layer_id: Optional[int] = None, |
|
std_factor: float = 1.0, |
|
type_of_module: Optional[ModuleType] = None, |
|
) -> None: |
|
""" |
|
Initialize weights of a linear or embedding module. |
|
|
|
:param config: The model config. |
|
:param module: The linear or embedding submodule to initialize. |
|
:param layer_dim: The effective input dimensionality of the weights. This could be smaller than the actual dimensions |
|
for fused layers. |
|
:param layer_id: When set, the standard deviation for the "mitchell" method will be adjusted by |
|
``1 / sqrt(2 * (layer_id + 1))``. |
|
""" |
|
if config.init_method == InitFnType.full_megatron and config.init_small_embedding: |
|
raise ValueError("Cannot use 'small_embedding_init' with 'full_megatron' init.") |
|
|
|
layer_dim = layer_dim if layer_dim is not None else config.hidden_size |
|
if config.init_method == InitFnType.normal: |
|
std = config.init_std * std_factor |
|
if config.init_cutoff_factor is not None: |
|
cutoff_value = config.init_cutoff_factor * std |
|
nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-cutoff_value, b=cutoff_value) |
|
else: |
|
nn.init.normal_(module.weight, mean=0.0, std=std) |
|
elif config.init_method == InitFnType.mitchell: |
|
std = std_factor / math.sqrt(layer_dim) |
|
if layer_id is not None: |
|
std = std / math.sqrt(2 * (layer_id + 1)) |
|
nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-3 * std, b=3 * std) |
|
elif config.init_method == InitFnType.kaiming_normal: |
|
nn.init.kaiming_normal_(module.weight, nonlinearity="relu") |
|
elif config.init_method == InitFnType.fan_in: |
|
std = std_factor / math.sqrt(layer_dim) |
|
nn.init.normal_(module.weight, mean=0.0, std=std) |
|
elif config.init_method == InitFnType.full_megatron: |
|
if type_of_module is None: |
|
raise RuntimeError(f"When using the {InitFnType.full_megatron} init, every module must have a type.") |
|
|
|
cutoff_factor = config.init_cutoff_factor |
|
if cutoff_factor is None: |
|
cutoff_factor = 3 |
|
|
|
if type_of_module == ModuleType.in_module: |
|
|
|
std = config.init_std |
|
elif type_of_module == ModuleType.out_module: |
|
|
|
std = config.init_std / math.sqrt(2.0 * config.num_hidden_layers) |
|
elif type_of_module == ModuleType.emb: |
|
|
|
|
|
std = config.init_std |
|
elif type_of_module == ModuleType.final_out: |
|
|
|
std = config.hidden_size**-0.5 |
|
else: |
|
raise RuntimeError(f"Unknown module type '{type_of_module}'") |
|
|
|
nn.init.trunc_normal_( |
|
module.weight, |
|
mean=0.0, |
|
std=std, |
|
a=-cutoff_factor * std, |
|
b=cutoff_factor * std, |
|
) |
|
elif config.init_method == InitFnType.default: |
|
|
|
|
|
if isinstance(module, nn.Linear): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=config.init_std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=config.init_std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
else: |
|
raise NotImplementedError(config.init_method) |
|
|
|
if isinstance(module, nn.Linear): |
|
if module.bias is not None: |
|
nn.init.zeros_(module.bias) |
|
|
|
if config.init_method == InitFnType.normal and getattr(module, "_is_residual", False): |
|
with torch.no_grad(): |
|
module.weight.div_(math.sqrt(2 * config.num_hidden_layers)) |
|
|
|
if isinstance(module, nn.Embedding) and config.init_small_embedding: |
|
nn.init.uniform_(module.weight, a=-1e-4, b=1e-4) |
|
|
|
|
|
class TileMode(StrEnum): |
|
center_weights = "center_weights" |
|
tile_weights_from_edge = "tile_weights_from_edge" |
|
tile_weights_from_middle = "tile_weights_from_middle" |
|
|
|
|
|
def tile_weight( |
|
pretrained_weights: torch.Tensor, |
|
new_weights: torch.Tensor, |
|
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle, |
|
) -> torch.Tensor: |
|
""" |
|
Tile or center an input tensor to a larger desired size. Works for both 2D and 1D tensors. |
|
|
|
Args: |
|
pretrained_weights (torch.Tensor): The input tensor to be tiled or centered (1D or 2D). |
|
new_weights (torch.Tensor): The tensor with the desired size. |
|
mode (Union[str, TileMode]): 'center_weights', 'tile_weights_from_edge', or 'tile_weights_from_middle' |
|
|
|
Returns: |
|
torch.Tensor: The resulting tensor of the desired size. |
|
""" |
|
assert pretrained_weights.dim() in (1, 2), "Input tensor must be 1-dimensional or 2-dimensional" |
|
if isinstance(mode, str): |
|
mode = TileMode(mode) |
|
|
|
pretrained_weights = pretrained_weights.clone() |
|
|
|
if pretrained_weights.dim() == 1: |
|
return _tile_1d(pretrained_weights, new_weights, mode) |
|
else: |
|
return _tile_2d(pretrained_weights, new_weights, mode) |
|
|
|
|
|
def _tile_1d(pretrained_weights: torch.Tensor, new_weights: torch.Tensor, mode: TileMode) -> torch.Tensor: |
|
assert pretrained_weights.dim() == 1, "Input tensor must be 1-dimensional" |
|
input_size = pretrained_weights.shape[0] |
|
new_size = new_weights.shape[0] |
|
assert new_size >= input_size, "Desired size must be greater than or equal to input size" |
|
|
|
if mode == TileMode.center_weights: |
|
offset = (new_size - input_size) // 2 |
|
new_weights[offset : offset + input_size] = pretrained_weights |
|
return new_weights.clone() |
|
elif mode == TileMode.tile_weights_from_edge: |
|
repeat_count = (new_size + input_size - 1) // input_size |
|
tiled_tensor = pretrained_weights.repeat(repeat_count) |
|
return tiled_tensor[:new_size].clone() |
|
elif mode == TileMode.tile_weights_from_middle: |
|
|
|
offset = (new_size - input_size) // 2 |
|
|
|
|
|
result = torch.zeros(new_size, dtype=pretrained_weights.dtype, device=pretrained_weights.device) |
|
|
|
|
|
result[offset : offset + input_size] = pretrained_weights |
|
|
|
|
|
for i in range(offset): |
|
result[offset - 1 - i] = pretrained_weights[input_size - 1 - (i % input_size)] |
|
for i in range(offset + input_size, new_size): |
|
result[i] = pretrained_weights[(i - offset) % input_size] |
|
return result.clone() |
|
|
|
|
|
def _tile_2d(pretrained_weights: torch.Tensor, new_weights: torch.Tensor, mode: TileMode) -> torch.Tensor: |
|
assert pretrained_weights.dim() == 2, "Input tensor must be 2-dimensional" |
|
input_height, input_width = pretrained_weights.shape |
|
new_height, new_width = new_weights.shape |
|
assert new_height >= input_height, "Desired height must be greater than or equal to input height" |
|
assert new_width >= input_width, "Desired width must be greater than or equal to input width" |
|
|
|
if mode == TileMode.center_weights: |
|
height_offset = (new_height - input_height) // 2 |
|
width_offset = (new_width - input_width) // 2 |
|
new_weights[height_offset : height_offset + input_height, width_offset : width_offset + input_width] = pretrained_weights |
|
return new_weights.clone() |
|
elif mode == TileMode.tile_weights_from_edge: |
|
repeat_height = (new_height + input_height - 1) // input_height |
|
repeat_width = (new_width + input_width - 1) // input_width |
|
tiled_tensor = pretrained_weights.repeat(repeat_height, repeat_width) |
|
return tiled_tensor[:new_height, :new_width].clone() |
|
elif mode == TileMode.tile_weights_from_middle: |
|
|
|
height_offset = (new_height - input_height) // 2 |
|
width_offset = (new_width - input_width) // 2 |
|
|
|
|
|
horizontal_tiled = torch.zeros( |
|
input_height, new_width, dtype=pretrained_weights.dtype, device=pretrained_weights.device |
|
) |
|
|
|
|
|
horizontal_tiled[:, width_offset : width_offset + input_width] = pretrained_weights |
|
|
|
|
|
for i in range(width_offset): |
|
horizontal_tiled[:, i] = horizontal_tiled[ |
|
:, width_offset + input_width - 1 - (width_offset - i - 1) % input_width |
|
] |
|
for i in range(width_offset + input_width, new_width): |
|
horizontal_tiled[:, i] = horizontal_tiled[:, width_offset + (i - width_offset) % input_width] |
|
|
|
|
|
result = torch.zeros(new_height, new_width, dtype=pretrained_weights.dtype, device=pretrained_weights.device) |
|
result[height_offset : height_offset + input_height, :] = horizontal_tiled |
|
|
|
|
|
for i in range(height_offset): |
|
row_to_copy = (input_height - 1) - (i % input_height) |
|
result[height_offset - 1 - i, :] = horizontal_tiled[row_to_copy, :] |
|
|
|
|
|
for i in range(height_offset + input_height, new_height): |
|
row_to_copy = (i - height_offset) % input_height |
|
result[i, :] = horizontal_tiled[row_to_copy, :] |
|
return result.clone() |
|
|
|
|
|
def tile_fused_qkv( |
|
pretrained_qkv_weight: torch.Tensor, |
|
new_qkv_weight: torch.Tensor, |
|
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle, |
|
): |
|
""" |
|
Tile the weights of a fused pretrained QKV layer to a new, larger QKV dimension. |
|
|
|
Args: |
|
pretrained_qkv_weight (torch.Tensor): The original fused QKV layer |
|
new_qkv_weight (torch.Tensor): The new fused QKV layer with larger linear_dim |
|
mode (Union[str, TileMode]): The tiling mode to use |
|
Returns: |
|
torch.Tensor: The new fused QKV layer with tiled weights |
|
""" |
|
|
|
pretrained_q, pretrained_k, pretrained_v = pretrained_qkv_weight.chunk(3, dim=0) |
|
new_q, new_k, new_v = new_qkv_weight.chunk(3, dim=0) |
|
|
|
|
|
new_q = tile_weight(pretrained_q, new_q, mode=mode) |
|
new_k = tile_weight(pretrained_k, new_k, mode=mode) |
|
new_v = tile_weight(pretrained_v, new_v, mode=mode) |
|
|
|
|
|
return torch.cat([new_q, new_k, new_v], dim=0) |
|
|
|
|
|
def tile_fused_glu( |
|
pretrained_glu_weight: torch.Tensor, |
|
new_glu_weight: torch.Tensor, |
|
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle, |
|
): |
|
""" |
|
Tile the weights of a fused pretrained GLU layer to a new, larger GLU dimension. |
|
|
|
Args: |
|
pretrained_glu_weight (torch.Tensor): The original fused GLU layer |
|
new_glu_weight (torch.Tensor): The new fused GLU layer with larger linear_dim |
|
mode (Union[str, TileMode]): The tiling mode to use |
|
Returns: |
|
torch.Tensor: The new fused GLU layer with tiled weights |
|
""" |
|
|
|
pretrained_glu_wi, pretrained_glu_wg = pretrained_glu_weight.chunk(2, dim=0) |
|
new_glu_wi, new_glu_wg = new_glu_weight.chunk(2, dim=0) |
|
|
|
|
|
new_glu_wi = tile_weight(pretrained_glu_wi, new_glu_wi, mode=mode) |
|
new_glu_wg = tile_weight(pretrained_glu_wg, new_glu_wg, mode=mode) |
|
|
|
|
|
return torch.cat([new_glu_wi, new_glu_wg], dim=0) |
|
|
|
|
|
def tile_fused_qkvff( |
|
pretrained_qkvff_weight: torch.Tensor, |
|
new_qkvff_weight: torch.Tensor, |
|
pretrained_attn_size: int, |
|
pretrained_mlp_size: int, |
|
new_attn_size: int, |
|
new_mlp_size: int, |
|
is_glu: bool = False, |
|
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle, |
|
): |
|
""" |
|
Tile the weights of a fused pretrained QKVFF layer to a new, larger QKVFF dimension. |
|
|
|
Args: |
|
pretrained_qkvff_weight (torch.Tensor): The original fused QKVFF layer |
|
new_qkvff_weight (torch.Tensor): The new fused QKVFF layer with larger linear_dim |
|
pretrained_attn_size (int): The attention size of the pretrained fused QKVFF layer |
|
pretrained_mlp_size (int): The mlp size of the pretrained fused QKVFF layer |
|
new_attn_size (int): The attention size of the new fused QKVFF layer |
|
new_mlp_size (int): The mlp size of the new fused QKVFF layer |
|
is_glu (bool): Whether the QKVFF layer is a GLU layer |
|
mode (Union[str, TileMode]): The tiling mode to use |
|
Returns: |
|
torch.Tensor: The new fused QKVFF layer with tiled weights |
|
""" |
|
|
|
pretrained_qkv, pretrained_ff = pretrained_qkvff_weight.split([pretrained_attn_size, pretrained_mlp_size], dim=0) |
|
new_qkv, new_ff = new_qkvff_weight.split([new_attn_size, new_mlp_size], dim=0) |
|
|
|
|
|
new_qkv = tile_fused_qkv(pretrained_qkv, new_qkv, mode=mode) |
|
if is_glu: |
|
new_ff = tile_fused_glu(pretrained_ff, new_ff, mode=mode) |
|
else: |
|
new_ff = tile_weight(pretrained_ff, new_ff, mode=mode) |
|
|
|
|
|
return torch.cat([new_qkv, new_ff], dim=0) |
|
|
|
|
|
class TileLinear(StrEnum): |
|
wqkv = "wqkv" |
|
glu = "glu" |
|
wqkvff = "wqkvff" |
|
default = "default" |
|
|
|
|
|
def tile_linear( |
|
pretrained_linear: nn.Linear, |
|
new_linear: nn.Linear, |
|
linear_type: Union[str, TileLinear] = TileLinear.default, |
|
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle, |
|
pretrained_attn_size: Optional[int] = None, |
|
pretrained_mlp_size: Optional[int] = None, |
|
new_attn_size: Optional[int] = None, |
|
new_mlp_size: Optional[int] = None, |
|
wqkvff_is_glu: Optional[bool] = None, |
|
bias_only: Optional[bool] = False, |
|
): |
|
""" |
|
Tile the weights of a linear layer to a new, larger linear dimension. |
|
|
|
Args: |
|
pretrained_linear (nn.Linear): The original linear layer |
|
new_linear (nn.Linear): The new linear layer with larger linear_dim |
|
linear_type (Union[str, TileLinear]): The type of linear layer to tile |
|
mode (Union[str, TileMode]): The tiling mode to use |
|
pretrained_attn_size (int): The attention size of the pretrained linear layer. Only used if linear_type is wqkvff. |
|
pretrained_mlp_size (int): The mlp size of the pretrained linear layer. Only used if linear_type is wqkvff. |
|
new_attn_size (int): The attention size of the new linear layer. Only used if linear_type is wqkvff. |
|
new_mlp_size (int): The mlp size of the new linear layer. Only used if linear_type is wqkvff. |
|
wqkvff_is_glu (bool): Whether the wqkvff layer is a GLU layer. Only used if linear_type is wqkvff. |
|
bias_only (bool): Whether to only tile the bias. Only used if tiling weight tied decoder. |
|
""" |
|
if isinstance(linear_type, str): |
|
linear_type = TileLinear(linear_type) |
|
if isinstance(mode, str): |
|
mode = TileMode(mode) |
|
|
|
with torch.no_grad(): |
|
if linear_type == TileLinear.wqkv: |
|
if not bias_only: |
|
new_linear.weight = nn.Parameter( |
|
tile_fused_qkv(pretrained_linear.weight, new_linear.weight, mode=mode), |
|
requires_grad=new_linear.weight.requires_grad, |
|
) |
|
if pretrained_linear.bias is not None: |
|
new_linear.bias = nn.Parameter( |
|
tile_fused_qkv(pretrained_linear.bias, new_linear.bias, mode=mode), |
|
requires_grad=new_linear.bias.requires_grad, |
|
) |
|
elif linear_type == TileLinear.glu: |
|
if not bias_only: |
|
new_linear.weight = nn.Parameter( |
|
tile_fused_glu(pretrained_linear.weight, new_linear.weight, mode=mode), |
|
requires_grad=new_linear.weight.requires_grad, |
|
) |
|
if pretrained_linear.bias is not None: |
|
new_linear.bias = nn.Parameter( |
|
tile_fused_glu(pretrained_linear.bias, new_linear.bias, mode=mode), |
|
requires_grad=new_linear.bias.requires_grad, |
|
) |
|
elif linear_type == TileLinear.wqkvff: |
|
if not bias_only: |
|
new_linear.weight = nn.Parameter( |
|
tile_fused_qkvff( |
|
pretrained_linear.weight, |
|
new_linear.weight, |
|
pretrained_attn_size, |
|
pretrained_mlp_size, |
|
new_attn_size, |
|
new_mlp_size, |
|
wqkvff_is_glu, |
|
mode=mode, |
|
), |
|
requires_grad=new_linear.weight.requires_grad, |
|
) |
|
if pretrained_linear.bias is not None: |
|
new_linear.bias = nn.Parameter( |
|
tile_fused_qkvff( |
|
pretrained_linear.bias, |
|
new_linear.bias, |
|
pretrained_attn_size, |
|
pretrained_mlp_size, |
|
new_attn_size, |
|
new_mlp_size, |
|
wqkvff_is_glu, |
|
mode=mode, |
|
), |
|
requires_grad=new_linear.bias.requires_grad, |
|
) |
|
else: |
|
if not bias_only: |
|
new_linear.weight = nn.Parameter( |
|
tile_weight(pretrained_linear.weight, new_linear.weight, mode=mode), |
|
requires_grad=new_linear.weight.requires_grad, |
|
) |
|
if pretrained_linear.bias is not None: |
|
new_linear.bias = nn.Parameter( |
|
tile_weight(pretrained_linear.bias, new_linear.bias, mode=mode), |
|
requires_grad=new_linear.bias.requires_grad, |
|
) |
|
|
|
|
|
def tile_norm( |
|
pretrained_norm: Union[nn.LayerNorm, RMSNorm, nn.Identity], |
|
new_norm: Union[nn.LayerNorm, RMSNorm, nn.Identity], |
|
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle, |
|
): |
|
""" |
|
Tile the weights of a pretrained norm layer to a new, larger layer norm dimension. |
|
|
|
Args: |
|
pretrained_norm (Union[nn.LayerNorm, RMSNorm, nn.Identity]): The original norm layer |
|
new_norm (Union[nn.LayerNorm, RMSNorm, nn.Identity]): The new norm layer with larger layer norm dimension |
|
mode (Union[str, TileMode]): The Phi-style weight tiling mode to use |
|
""" |
|
if isinstance(pretrained_norm, nn.Identity): |
|
return |
|
if isinstance(mode, str): |
|
mode = TileMode(mode) |
|
|
|
with torch.no_grad(): |
|
new_norm.weight.data = nn.Parameter( |
|
tile_weight(pretrained_norm.weight, new_norm.weight, mode=mode), |
|
requires_grad=new_norm.weight.requires_grad, |
|
) |
|
if hasattr(pretrained_norm, "bias") and pretrained_norm.bias is not None: |
|
new_norm.bias.data = nn.Parameter( |
|
tile_weight(pretrained_norm.bias, new_norm.bias, mode=mode), |
|
requires_grad=new_norm.bias.requires_grad, |
|
) |
|
|
|
|
|
def tile_embedding( |
|
pretrained_embedding: nn.Embedding, |
|
new_embedding: nn.Embedding, |
|
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle, |
|
) -> nn.Embedding: |
|
""" |
|
Tile the weights of an embedding layer to a new, larger embedding dimension. |
|
|
|
Args: |
|
pretrained_embedding (nn.Embedding): The original embedding layer |
|
new_embedding (nn.Embedding): The new embedding layer with larger embedding_dim |
|
tile_mode (Union[str, TileMode]): The Phi-style weight tiling mode to use |
|
|
|
Returns: |
|
nn.Embedding: The new embedding layer with tiled weights |
|
""" |
|
with torch.no_grad(): |
|
|
|
if pretrained_embedding.num_embeddings != new_embedding.num_embeddings: |
|
raise ValueError("Vocabulary size (num_embeddings) must remain constant") |
|
|
|
|
|
if new_embedding.embedding_dim <= pretrained_embedding.embedding_dim: |
|
raise ValueError("New embedding_dim must be larger than the old embedding_dim") |
|
|
|
|
|
new_embedding.weight.data = nn.Parameter( |
|
tile_weight(pretrained_embedding.weight, new_embedding.weight, mode=mode), |
|
requires_grad=new_embedding.weight.requires_grad, |
|
) |
|
|
|
|
|
if pretrained_embedding.padding_idx is not None: |
|
if new_embedding.padding_idx is None: |
|
new_embedding.padding_idx = pretrained_embedding.padding_idx |
|
else: |
|
assert new_embedding.padding_idx == pretrained_embedding.padding_idx, "padding_idx must remain the same" |
|
|