FlexGPT / initialization.py
oweller2
init model
c9e4fad
# Copyright 2022 MosaicML Examples authors
# SPDX-License-Identifier: Apache-2.0
# Copyright 2023 OLMo Authors
# License: Apache-2.0
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
# License: Apache-2.0
import math
from typing import Optional, Union
import torch
import torch.nn as nn
from .utils import StrEnum
from .configuration_bert import FlexBertConfig
from .normalization import RMSNorm
__all__ = ["init_weights", "ModuleType", "InitFnType"]
class InitFnType(StrEnum):
mitchell = "mitchell"
"""
The strategy suggested to us by Mitchell Wortsman from UW.
This uses a truncated normal distribution with an adaptive standard deviation that depends
on the size of the weights as well as the depth of the layer.
"""
normal = "normal"
"""
All weights are initialized from the same normal distribution.
"""
default = "default"
"""
All weights are initialized with the default HuggingFace Bert method. Set init_std=0.02 to match.
"""
kaiming_normal = "kaiming_normal"
"""
All weights are initialized with the Kaiming method from a normal distribution.
Note this currently won't work with FSDP.
"""
fan_in = "fan_in"
"""
"Fan-in variance scaling", i.e. normal with a standard deviation of ``1/sqrt(d_in)`` where ``d_in``
is the input dimensionality of the kernel.
"""
full_megatron = "full_megatron"
"""
This is what metaseq calls "full megatron init". It is the init used for Llama 2.
"""
class ModuleType(StrEnum):
in_module = "in"
out_module = "out"
emb = "emb"
final_out = "final_out"
def init_weights(
config: FlexBertConfig,
module: Union[nn.Linear, nn.Embedding],
layer_dim: Optional[int] = None,
layer_id: Optional[int] = None,
std_factor: float = 1.0,
type_of_module: Optional[ModuleType] = None,
) -> None:
"""
Initialize weights of a linear or embedding module.
:param config: The model config.
:param module: The linear or embedding submodule to initialize.
:param layer_dim: The effective input dimensionality of the weights. This could be smaller than the actual dimensions
for fused layers.
:param layer_id: When set, the standard deviation for the "mitchell" method will be adjusted by
``1 / sqrt(2 * (layer_id + 1))``.
"""
if config.init_method == InitFnType.full_megatron and config.init_small_embedding:
raise ValueError("Cannot use 'small_embedding_init' with 'full_megatron' init.")
layer_dim = layer_dim if layer_dim is not None else config.hidden_size
if config.init_method == InitFnType.normal:
std = config.init_std * std_factor
if config.init_cutoff_factor is not None:
cutoff_value = config.init_cutoff_factor * std
nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-cutoff_value, b=cutoff_value)
else:
nn.init.normal_(module.weight, mean=0.0, std=std)
elif config.init_method == InitFnType.mitchell:
std = std_factor / math.sqrt(layer_dim)
if layer_id is not None:
std = std / math.sqrt(2 * (layer_id + 1))
nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-3 * std, b=3 * std)
elif config.init_method == InitFnType.kaiming_normal:
nn.init.kaiming_normal_(module.weight, nonlinearity="relu")
elif config.init_method == InitFnType.fan_in:
std = std_factor / math.sqrt(layer_dim)
nn.init.normal_(module.weight, mean=0.0, std=std)
elif config.init_method == InitFnType.full_megatron:
if type_of_module is None:
raise RuntimeError(f"When using the {InitFnType.full_megatron} init, every module must have a type.")
cutoff_factor = config.init_cutoff_factor
if cutoff_factor is None:
cutoff_factor = 3
if type_of_module == ModuleType.in_module:
# for att_proj (same as QKV), ff_proj
std = config.init_std
elif type_of_module == ModuleType.out_module:
# for attn_out, ff_out
std = config.init_std / math.sqrt(2.0 * config.num_hidden_layers)
elif type_of_module == ModuleType.emb:
# positional embeddings (wpe)
# token embeddings (wte)
std = config.init_std
elif type_of_module == ModuleType.final_out:
# final output (ff_out)
std = config.hidden_size**-0.5
else:
raise RuntimeError(f"Unknown module type '{type_of_module}'")
nn.init.trunc_normal_(
module.weight,
mean=0.0,
std=std,
a=-cutoff_factor * std,
b=cutoff_factor * std,
)
elif config.init_method == InitFnType.default:
# default hugging face bert initialization
# normalization layers already init to ones and zeros
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=config.init_std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=config.init_std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
else:
raise NotImplementedError(config.init_method)
if isinstance(module, nn.Linear):
if module.bias is not None:
nn.init.zeros_(module.bias)
if config.init_method == InitFnType.normal and getattr(module, "_is_residual", False):
with torch.no_grad():
module.weight.div_(math.sqrt(2 * config.num_hidden_layers))
if isinstance(module, nn.Embedding) and config.init_small_embedding:
nn.init.uniform_(module.weight, a=-1e-4, b=1e-4)
class TileMode(StrEnum):
center_weights = "center_weights"
tile_weights_from_edge = "tile_weights_from_edge"
tile_weights_from_middle = "tile_weights_from_middle"
def tile_weight(
pretrained_weights: torch.Tensor,
new_weights: torch.Tensor,
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
) -> torch.Tensor:
"""
Tile or center an input tensor to a larger desired size. Works for both 2D and 1D tensors.
Args:
pretrained_weights (torch.Tensor): The input tensor to be tiled or centered (1D or 2D).
new_weights (torch.Tensor): The tensor with the desired size.
mode (Union[str, TileMode]): 'center_weights', 'tile_weights_from_edge', or 'tile_weights_from_middle'
Returns:
torch.Tensor: The resulting tensor of the desired size.
"""
assert pretrained_weights.dim() in (1, 2), "Input tensor must be 1-dimensional or 2-dimensional"
if isinstance(mode, str):
mode = TileMode(mode)
pretrained_weights = pretrained_weights.clone()
if pretrained_weights.dim() == 1:
return _tile_1d(pretrained_weights, new_weights, mode)
else:
return _tile_2d(pretrained_weights, new_weights, mode)
def _tile_1d(pretrained_weights: torch.Tensor, new_weights: torch.Tensor, mode: TileMode) -> torch.Tensor:
assert pretrained_weights.dim() == 1, "Input tensor must be 1-dimensional"
input_size = pretrained_weights.shape[0]
new_size = new_weights.shape[0]
assert new_size >= input_size, "Desired size must be greater than or equal to input size"
if mode == TileMode.center_weights:
offset = (new_size - input_size) // 2
new_weights[offset : offset + input_size] = pretrained_weights
return new_weights.clone()
elif mode == TileMode.tile_weights_from_edge:
repeat_count = (new_size + input_size - 1) // input_size
tiled_tensor = pretrained_weights.repeat(repeat_count)
return tiled_tensor[:new_size].clone()
elif mode == TileMode.tile_weights_from_middle:
# Calculate offsets to center the original tensor
offset = (new_size - input_size) // 2
# Create a new tensor with the desired size
result = torch.zeros(new_size, dtype=pretrained_weights.dtype, device=pretrained_weights.device)
# Place the original tensor in the center
result[offset : offset + input_size] = pretrained_weights
# Tile the left and right sides
for i in range(offset):
result[offset - 1 - i] = pretrained_weights[input_size - 1 - (i % input_size)]
for i in range(offset + input_size, new_size):
result[i] = pretrained_weights[(i - offset) % input_size]
return result.clone()
def _tile_2d(pretrained_weights: torch.Tensor, new_weights: torch.Tensor, mode: TileMode) -> torch.Tensor:
assert pretrained_weights.dim() == 2, "Input tensor must be 2-dimensional"
input_height, input_width = pretrained_weights.shape
new_height, new_width = new_weights.shape
assert new_height >= input_height, "Desired height must be greater than or equal to input height"
assert new_width >= input_width, "Desired width must be greater than or equal to input width"
if mode == TileMode.center_weights:
height_offset = (new_height - input_height) // 2
width_offset = (new_width - input_width) // 2
new_weights[height_offset : height_offset + input_height, width_offset : width_offset + input_width] = pretrained_weights # fmt: skip
return new_weights.clone()
elif mode == TileMode.tile_weights_from_edge:
repeat_height = (new_height + input_height - 1) // input_height
repeat_width = (new_width + input_width - 1) // input_width
tiled_tensor = pretrained_weights.repeat(repeat_height, repeat_width)
return tiled_tensor[:new_height, :new_width].clone()
elif mode == TileMode.tile_weights_from_middle:
# Calculate offsets to center the original tensor
height_offset = (new_height - input_height) // 2
width_offset = (new_width - input_width) // 2
# Create a new tensor with the desired width and input height
horizontal_tiled = torch.zeros(
input_height, new_width, dtype=pretrained_weights.dtype, device=pretrained_weights.device
)
# Place the original tensor in the center horizontally
horizontal_tiled[:, width_offset : width_offset + input_width] = pretrained_weights
# Tile the left and right sides
for i in range(width_offset):
horizontal_tiled[:, i] = horizontal_tiled[
:, width_offset + input_width - 1 - (width_offset - i - 1) % input_width
]
for i in range(width_offset + input_width, new_width):
horizontal_tiled[:, i] = horizontal_tiled[:, width_offset + (i - width_offset) % input_width]
# Now tile vertically
result = torch.zeros(new_height, new_width, dtype=pretrained_weights.dtype, device=pretrained_weights.device)
result[height_offset : height_offset + input_height, :] = horizontal_tiled
# Tile top
for i in range(height_offset):
row_to_copy = (input_height - 1) - (i % input_height)
result[height_offset - 1 - i, :] = horizontal_tiled[row_to_copy, :]
# Tile bottom
for i in range(height_offset + input_height, new_height):
row_to_copy = (i - height_offset) % input_height
result[i, :] = horizontal_tiled[row_to_copy, :]
return result.clone()
def tile_fused_qkv(
pretrained_qkv_weight: torch.Tensor,
new_qkv_weight: torch.Tensor,
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
):
"""
Tile the weights of a fused pretrained QKV layer to a new, larger QKV dimension.
Args:
pretrained_qkv_weight (torch.Tensor): The original fused QKV layer
new_qkv_weight (torch.Tensor): The new fused QKV layer with larger linear_dim
mode (Union[str, TileMode]): The tiling mode to use
Returns:
torch.Tensor: The new fused QKV layer with tiled weights
"""
# Split QKV, assume new_q, new_k, new_v are the same shape
pretrained_q, pretrained_k, pretrained_v = pretrained_qkv_weight.chunk(3, dim=0)
new_q, new_k, new_v = new_qkv_weight.chunk(3, dim=0)
# Tile Q, K, V separately
new_q = tile_weight(pretrained_q, new_q, mode=mode)
new_k = tile_weight(pretrained_k, new_k, mode=mode)
new_v = tile_weight(pretrained_v, new_v, mode=mode)
# Concatenate tiled Q, K, V
return torch.cat([new_q, new_k, new_v], dim=0)
def tile_fused_glu(
pretrained_glu_weight: torch.Tensor,
new_glu_weight: torch.Tensor,
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
):
"""
Tile the weights of a fused pretrained GLU layer to a new, larger GLU dimension.
Args:
pretrained_glu_weight (torch.Tensor): The original fused GLU layer
new_glu_weight (torch.Tensor): The new fused GLU layer with larger linear_dim
mode (Union[str, TileMode]): The tiling mode to use
Returns:
torch.Tensor: The new fused GLU layer with tiled weights
"""
# Split GLU, assume new_glu_wi, new_glu_wg are the same shape
pretrained_glu_wi, pretrained_glu_wg = pretrained_glu_weight.chunk(2, dim=0)
new_glu_wi, new_glu_wg = new_glu_weight.chunk(2, dim=0)
# Tile GLU separately
new_glu_wi = tile_weight(pretrained_glu_wi, new_glu_wi, mode=mode)
new_glu_wg = tile_weight(pretrained_glu_wg, new_glu_wg, mode=mode)
# Concatenate tiled GLU
return torch.cat([new_glu_wi, new_glu_wg], dim=0)
def tile_fused_qkvff(
pretrained_qkvff_weight: torch.Tensor,
new_qkvff_weight: torch.Tensor,
pretrained_attn_size: int,
pretrained_mlp_size: int,
new_attn_size: int,
new_mlp_size: int,
is_glu: bool = False,
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
):
"""
Tile the weights of a fused pretrained QKVFF layer to a new, larger QKVFF dimension.
Args:
pretrained_qkvff_weight (torch.Tensor): The original fused QKVFF layer
new_qkvff_weight (torch.Tensor): The new fused QKVFF layer with larger linear_dim
pretrained_attn_size (int): The attention size of the pretrained fused QKVFF layer
pretrained_mlp_size (int): The mlp size of the pretrained fused QKVFF layer
new_attn_size (int): The attention size of the new fused QKVFF layer
new_mlp_size (int): The mlp size of the new fused QKVFF layer
is_glu (bool): Whether the QKVFF layer is a GLU layer
mode (Union[str, TileMode]): The tiling mode to use
Returns:
torch.Tensor: The new fused QKVFF layer with tiled weights
"""
# Split QKVFF
pretrained_qkv, pretrained_ff = pretrained_qkvff_weight.split([pretrained_attn_size, pretrained_mlp_size], dim=0)
new_qkv, new_ff = new_qkvff_weight.split([new_attn_size, new_mlp_size], dim=0)
# Tile QKVFF separately
new_qkv = tile_fused_qkv(pretrained_qkv, new_qkv, mode=mode)
if is_glu:
new_ff = tile_fused_glu(pretrained_ff, new_ff, mode=mode)
else:
new_ff = tile_weight(pretrained_ff, new_ff, mode=mode)
# Concatenate tiled QKVFF
return torch.cat([new_qkv, new_ff], dim=0)
class TileLinear(StrEnum):
wqkv = "wqkv"
glu = "glu"
wqkvff = "wqkvff"
default = "default"
def tile_linear(
pretrained_linear: nn.Linear,
new_linear: nn.Linear,
linear_type: Union[str, TileLinear] = TileLinear.default,
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
pretrained_attn_size: Optional[int] = None,
pretrained_mlp_size: Optional[int] = None,
new_attn_size: Optional[int] = None,
new_mlp_size: Optional[int] = None,
wqkvff_is_glu: Optional[bool] = None,
bias_only: Optional[bool] = False,
):
"""
Tile the weights of a linear layer to a new, larger linear dimension.
Args:
pretrained_linear (nn.Linear): The original linear layer
new_linear (nn.Linear): The new linear layer with larger linear_dim
linear_type (Union[str, TileLinear]): The type of linear layer to tile
mode (Union[str, TileMode]): The tiling mode to use
pretrained_attn_size (int): The attention size of the pretrained linear layer. Only used if linear_type is wqkvff.
pretrained_mlp_size (int): The mlp size of the pretrained linear layer. Only used if linear_type is wqkvff.
new_attn_size (int): The attention size of the new linear layer. Only used if linear_type is wqkvff.
new_mlp_size (int): The mlp size of the new linear layer. Only used if linear_type is wqkvff.
wqkvff_is_glu (bool): Whether the wqkvff layer is a GLU layer. Only used if linear_type is wqkvff.
bias_only (bool): Whether to only tile the bias. Only used if tiling weight tied decoder.
"""
if isinstance(linear_type, str):
linear_type = TileLinear(linear_type)
if isinstance(mode, str):
mode = TileMode(mode)
with torch.no_grad():
if linear_type == TileLinear.wqkv:
if not bias_only:
new_linear.weight = nn.Parameter(
tile_fused_qkv(pretrained_linear.weight, new_linear.weight, mode=mode),
requires_grad=new_linear.weight.requires_grad,
)
if pretrained_linear.bias is not None:
new_linear.bias = nn.Parameter(
tile_fused_qkv(pretrained_linear.bias, new_linear.bias, mode=mode),
requires_grad=new_linear.bias.requires_grad,
)
elif linear_type == TileLinear.glu:
if not bias_only:
new_linear.weight = nn.Parameter(
tile_fused_glu(pretrained_linear.weight, new_linear.weight, mode=mode),
requires_grad=new_linear.weight.requires_grad,
)
if pretrained_linear.bias is not None:
new_linear.bias = nn.Parameter(
tile_fused_glu(pretrained_linear.bias, new_linear.bias, mode=mode),
requires_grad=new_linear.bias.requires_grad,
)
elif linear_type == TileLinear.wqkvff:
if not bias_only:
new_linear.weight = nn.Parameter(
tile_fused_qkvff(
pretrained_linear.weight,
new_linear.weight,
pretrained_attn_size,
pretrained_mlp_size,
new_attn_size,
new_mlp_size,
wqkvff_is_glu,
mode=mode,
),
requires_grad=new_linear.weight.requires_grad,
)
if pretrained_linear.bias is not None:
new_linear.bias = nn.Parameter(
tile_fused_qkvff(
pretrained_linear.bias,
new_linear.bias,
pretrained_attn_size,
pretrained_mlp_size,
new_attn_size,
new_mlp_size,
wqkvff_is_glu,
mode=mode,
),
requires_grad=new_linear.bias.requires_grad,
)
else:
if not bias_only:
new_linear.weight = nn.Parameter(
tile_weight(pretrained_linear.weight, new_linear.weight, mode=mode),
requires_grad=new_linear.weight.requires_grad,
)
if pretrained_linear.bias is not None:
new_linear.bias = nn.Parameter(
tile_weight(pretrained_linear.bias, new_linear.bias, mode=mode),
requires_grad=new_linear.bias.requires_grad,
)
def tile_norm(
pretrained_norm: Union[nn.LayerNorm, RMSNorm, nn.Identity],
new_norm: Union[nn.LayerNorm, RMSNorm, nn.Identity],
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
):
"""
Tile the weights of a pretrained norm layer to a new, larger layer norm dimension.
Args:
pretrained_norm (Union[nn.LayerNorm, RMSNorm, nn.Identity]): The original norm layer
new_norm (Union[nn.LayerNorm, RMSNorm, nn.Identity]): The new norm layer with larger layer norm dimension
mode (Union[str, TileMode]): The Phi-style weight tiling mode to use
"""
if isinstance(pretrained_norm, nn.Identity):
return
if isinstance(mode, str):
mode = TileMode(mode)
with torch.no_grad():
new_norm.weight.data = nn.Parameter(
tile_weight(pretrained_norm.weight, new_norm.weight, mode=mode),
requires_grad=new_norm.weight.requires_grad,
)
if hasattr(pretrained_norm, "bias") and pretrained_norm.bias is not None:
new_norm.bias.data = nn.Parameter(
tile_weight(pretrained_norm.bias, new_norm.bias, mode=mode),
requires_grad=new_norm.bias.requires_grad,
)
def tile_embedding(
pretrained_embedding: nn.Embedding,
new_embedding: nn.Embedding,
mode: Union[str, TileMode] = TileMode.tile_weights_from_middle,
) -> nn.Embedding:
"""
Tile the weights of an embedding layer to a new, larger embedding dimension.
Args:
pretrained_embedding (nn.Embedding): The original embedding layer
new_embedding (nn.Embedding): The new embedding layer with larger embedding_dim
tile_mode (Union[str, TileMode]): The Phi-style weight tiling mode to use
Returns:
nn.Embedding: The new embedding layer with tiled weights
"""
with torch.no_grad():
# Ensure vocabulary size remains the same
if pretrained_embedding.num_embeddings != new_embedding.num_embeddings:
raise ValueError("Vocabulary size (num_embeddings) must remain constant")
# Ensure new embedding dimension is larger
if new_embedding.embedding_dim <= pretrained_embedding.embedding_dim:
raise ValueError("New embedding_dim must be larger than the old embedding_dim")
# Tile the weights
new_embedding.weight.data = nn.Parameter(
tile_weight(pretrained_embedding.weight, new_embedding.weight, mode=mode),
requires_grad=new_embedding.weight.requires_grad,
)
# Handle padding_idx if it exists
if pretrained_embedding.padding_idx is not None:
if new_embedding.padding_idx is None:
new_embedding.padding_idx = pretrained_embedding.padding_idx
else:
assert new_embedding.padding_idx == pretrained_embedding.padding_idx, "padding_idx must remain the same"