|
--- |
|
license: mit |
|
language: |
|
- it |
|
widget: |
|
- text: "mi chiamo marco rossi, vivo a roma e lavoro per l'agenzia spaziale italiana" |
|
example_title: "Example 1" |
|
--- |
|
|
|
-------------------------------------------------------------------------------------------------- |
|
|
|
<body> |
|
<span class="vertical-text" style="background-color:lightgreen;border-radius: 3px;padding: 3px;"> </span> |
|
<br> |
|
<span class="vertical-text" style="background-color:orange;border-radius: 3px;padding: 3px;"> Task: Named Entity Recognition</span> |
|
<br> |
|
<span class="vertical-text" style="background-color:lightblue;border-radius: 3px;padding: 3px;"> Model: DeBERTa</span> |
|
<br> |
|
<span class="vertical-text" style="background-color:tomato;border-radius: 3px;padding: 3px;"> Lang: IT</span> |
|
<br> |
|
<span class="vertical-text" style="background-color:lightgrey;border-radius: 3px;padding: 3px;"> Type: Uncased</span> |
|
<br> |
|
<span class="vertical-text" style="background-color:#CF9FFF;border-radius: 3px;padding: 3px;"> </span> |
|
</body> |
|
|
|
-------------------------------------------------------------------------------------------------- |
|
|
|
<h3>Model description</h3> |
|
|
|
This is a <b>DeBERTa</b> <b>[1]</b> uncased model for the <b>Italian</b> language, fine-tuned for <b>Named Entity Recognition</b> (<b>Person</b>, <b>Location</b>, <b>Organization</b> and <b>Miscellanea</b> classes) on the [WikiNER](https://figshare.com/articles/dataset/Learning_multilingual_named_entity_recognition_from_Wikipedia/5462500) dataset <b>[2]</b>, using [mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) as a pre-trained model. |
|
|
|
|
|
<h3>Training and Performances</h3> |
|
|
|
The model is trained to perform entity recognition over 4 classes: <b>PER</b> (persons), <b>LOC</b> (locations), <b>ORG</b> (organizations), <b>MISC</b> (miscellanea, mainly events, products and services). It has been fine-tuned for Named Entity Recognition, using the WikiNER Italian dataset plus an additional custom dataset of manually annotated Wikipedia paragraphs. |
|
The WikiNER dataset has been splitted in 102.352 training instances and 25.588 test instances, and the model has been trained for 1 epoch with a constant learning rate of 1e-5. |
|
|
|
The model has been first fine-tuned on WikiNER, then focused on the Italian language and turned to uncased by modifying the embedding layer (as in [3], computing document-level frequencies over the Wikipedia dataset), and lastly fine-tuned on an additional dataset of ~3.500 manually annotated lowercase paragraphs. |
|
|
|
<h3>Quick usage</h3> |
|
|
|
```python |
|
from transformers import AutoModelForTokenClassification, AutoTokenizer |
|
from transformers import pipeline |
|
import re |
|
import string |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("osiria/deberta-base-italian-uncased-ner") |
|
model = AutoModelForTokenClassification.from_pretrained("osiria/deberta-base-italian-uncased-ner", num_labels = 5) |
|
|
|
text = "mi chiamo marco rossi, vivo a roma e lavoro per l'agenzia spaziale italiana nella missione prisma" |
|
|
|
for p in string.punctuation: |
|
text = text.replace(p, " " + p + " ") |
|
|
|
ner = pipeline("ner", model=model, tokenizer=tokenizer) |
|
ner(text, aggregation_strategy="simple") |
|
|
|
[{'entity_group': 'PER', |
|
'score': 0.9929623, |
|
'word': 'marco rossi', |
|
'start': 9, |
|
'end': 21}, |
|
{'entity_group': 'LOC', |
|
'score': 0.9898509, |
|
'word': 'roma', |
|
'start': 31, |
|
'end': 36}, |
|
{'entity_group': 'ORG', |
|
'score': 0.9905911, |
|
'word': 'agenzia spaziale italiana', |
|
'start': 53, |
|
'end': 79}, |
|
{'entity_group': 'MISC', |
|
'score': 0.92474234, |
|
'word': 'missione prisma', |
|
'start': 85, |
|
'end': 101}] |
|
``` |
|
|
|
<h3>References</h3> |
|
|
|
[1] https://arxiv.org/abs/2111.09543 |
|
|
|
[2] https://www.sciencedirect.com/science/article/pii/S0004370212000276 |
|
|
|
[3] https://arxiv.org/abs/2010.05609 |
|
|
|
<h3>Limitations</h3> |
|
|
|
This model is mainly trained on Wikipedia, so it's particularly suitable for natively digital text from the world wide web, written in a correct and fluent form (like wikis, web pages, news, etc.). However, it may show limitations when it comes to chaotic text, containing errors and slang expressions |
|
(like social media posts) or when it comes to domain-specific text (like medical, financial or legal content). |
|
|
|
<h3>License</h3> |
|
|
|
The model is released under <b>MIT</b> license |
|
|
|
|