ostoveland's picture
Add new SentenceTransformer model.
1bed14e verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:96724
  - loss:Matryoshka2dLoss
  - loss:MatryoshkaLoss
  - loss:TripletLoss
  - loss:MultipleNegativesRankingLoss
  - loss:CoSENTLoss
base_model: NbAiLab/nb-sbert-base
widget:
  - source_sentence: Ny duk til markise  5.6 meter
    sentences:
      - oppussing av tegl fasade
      - Installere ny markiseduk 5.6 meter
      - installasjon av vann og kloakk
  - source_sentence: Sette inn rør i pipe
    sentences:
      - montering av rør i pipe
      - bytte og flytte varmtvannsbereder
      - saging av betong for dører
  - source_sentence: Helsparkling og pussing av vegger i en leilighet  70 kvm
    sentences:
      - fullsparkling og pussing av vegger i 70 kvm leilighet
      - støttemur med bunnfundament, 26 meter lang og 3 meter høy
      - trappeteppe legging
  - source_sentence: Montering av peisovn, samt finsparkling av brannmur bak peisovnen
    sentences:
      - Verditakst av leilighet i Oslo
      - Montering av Nordpeis Sakai Peisovn - Lillestrøm
      - Etterisolering og bytte av kledning
  - source_sentence: Ny utvendig trapp til 2.etg
    sentences:
      - Installere utvendig trapp til 2. etasje
      - Flyttelass fra Tromsø til Bodø
      - tapetsere en vegg
pipeline_tag: sentence-similarity
library_name: sentence-transformers

SentenceTransformer based on NbAiLab/nb-sbert-base

This is a sentence-transformers model finetuned from NbAiLab/nb-sbert-base. It maps sentences & paragraphs to a 64-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: NbAiLab/nb-sbert-base
  • Maximum Sequence Length: 75 tokens
  • Output Dimensionality: 64 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("ostoveland/SBertBaseMittanbudver2")
# Run inference
sentences = [
    'Ny utvendig trapp til 2.etg',
    'Installere utvendig trapp til 2. etasje',
    'tapetsere en vegg',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 64]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Datasets

Unnamed Dataset

  • Size: 55,426 training samples
  • Columns: sentence_0, sentence_1, and sentence_2
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 sentence_2
    type string string string
    details
    • min: 4 tokens
    • mean: 11.44 tokens
    • max: 51 tokens
    • min: 4 tokens
    • mean: 10.73 tokens
    • max: 52 tokens
    • min: 4 tokens
    • mean: 10.42 tokens
    • max: 36 tokens
  • Samples:
    sentence_0 sentence_1 sentence_2
    Varmekabler soverom Legging av varmekabler Bytte vv bereder,
    Pga liten vannskade trengs det å fjerne / legge nytt laminat på kjøkken 9,5m2 Legge laminatgulv, samt montere gulvlister Garderobe med innfelte fronter
    Sette opp gjerde i stål Stålgjerde på natursteinsmur Legge pergo-gulv på soverom
  • Loss: Matryoshka2dLoss with these parameters:
    {
        "loss": "TripletLoss",
        "n_layers_per_step": 1,
        "last_layer_weight": 1.0,
        "prior_layers_weight": 1.0,
        "kl_div_weight": 1.0,
        "kl_temperature": 0.3,
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": 1
    }
    

Unnamed Dataset

  • Size: 22,563 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 3 tokens
    • mean: 11.06 tokens
    • max: 42 tokens
    • min: 4 tokens
    • mean: 10.13 tokens
    • max: 25 tokens
  • Samples:
    sentence_0 sentence_1
    bygge terrasse på 41 kvm 41 kvadratmeter terrasse i første etasje
    tapetsering av stue og spisestue tapetsere stue og spisestue
    Pusse opp en klinikk i Trondheim oppussing av klinikk i Trondheim
  • Loss: Matryoshka2dLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "n_layers_per_step": 1,
        "last_layer_weight": 1.0,
        "prior_layers_weight": 1.0,
        "kl_div_weight": 1.0,
        "kl_temperature": 0.3,
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": 1
    }
    

Unnamed Dataset

  • Size: 18,735 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 3 tokens
    • mean: 13.31 tokens
    • max: 55 tokens
    • min: 4 tokens
    • mean: 9.65 tokens
    • max: 24 tokens
    • min: 0.05
    • mean: 0.5
    • max: 0.95
  • Samples:
    sentence_0 sentence_1 label
    Overflateoppussing av Pilestredet Park renovere hus på 120kvm 0.9
    Tømme og koble fra varmtvannsbereder under kjøkkenbenk i 2 etg, samt montere ny 200 l. bereder i 1.etg, under trapp. Bytte varmtvannsbereder fra kjøkken til under trapp 0.95
    Kjerneboring Boring for rør 0.35
  • Loss: Matryoshka2dLoss with these parameters:
    {
        "loss": "CoSENTLoss",
        "n_layers_per_step": 1,
        "last_layer_weight": 1.0,
        "prior_layers_weight": 1.0,
        "kl_div_weight": 1.0,
        "kl_temperature": 0.3,
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": 1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss
0.2844 500 6.6521
0.5688 1000 7.298
0.8532 1500 7.4369
1.0006 1759 -
1.1371 2000 7.3562
1.4215 2500 7.0798
1.7059 3000 6.9418
1.9903 3500 7.1839
2.0006 3518 -
2.2742 4000 7.3609
2.5586 4500 6.9551
2.8430 5000 6.8276
2.9989 5274 -

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.3.1
  • Transformers: 4.46.3
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.1.1
  • Datasets: 3.1.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

Matryoshka2dLoss

@misc{li20242d,
    title={2D Matryoshka Sentence Embeddings},
    author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
    year={2024},
    eprint={2402.14776},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

TripletLoss

@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}