baseline / README.md
osv5m's picture
Update README.md
32bed39
|
raw
history blame
2.08 kB
---
language: en
license: mit
library_name: pytorch
model-index:
- name: baseline
results:
- task:
type: Geoscore
dataset:
name: OSV-5M
type: geolocation
metrics:
- type: geoscore
value: 3361
- task:
type: Haversine Distance
dataset:
name: OSV-5M
type: geolocation
metrics:
- type: haversine distance
value: 1814
- task:
type: Country classification
dataset:
name: OSV-5M
type: geolocation
metrics:
- type: country accuracy
value: 68
- task:
type: Region classification
dataset:
name: OSV-5M
type: geolocation
metrics:
- type: region accuracy
value: 39.4
- task:
type: Area classification
dataset:
name: OSV-5M
type: geolocation
metrics:
- type: area accuracy
value: 10.3
- task:
type: City classification
dataset:
name: OSV-5M
type: geolocation
metrics:
- type: city accuracy
value: 5.9
---
# Geolocation baseline on OSV-5M
More details to be released upon publication (\<tbr\>).
Everything is based on the OSV-5M benchmark dataset.
## Model Details
\<tbr\>
### Model Description
\<tbr\>
- **Developed by:** \<tbr\>
- **License:** mit
- **Based on hf models:** \<tbr\>
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** \<tbr\>
- **Paper:** \<tbr\>
- **Human Evaluation** \<tbr\>
## Usage
The main purpose of this model is academic usage. We provide a hugging face repo both to facilitate accessing and run inference to our model.
### Example usage
First download the repo `!git clone <tbr>`.
Then from any script whose `cwd` is the repos main directory (`cd <tbr>`) run:
```python
from PIL import Image
from huggingface import Geolocalizer
Geolocalizer.from_pretrained('osv5m/baseline')
img = Image.open('.media/examples/img1.jpeg')
x = geoloc.transform(img).unsqueeze(0) # transform the image using our dedicated transformer
gps = geolocalizer(x) # B, 2 (lat, lon - tensor in rad)
```