metadata
language: en
license: mit
library_name: pytorch
model-index:
- name: baseline
results:
- task:
type: Geoscore
dataset:
name: OSV-5M
type: geolocation
metrics:
- type: geoscore
value: 3361
- task:
type: Haversine Distance
dataset:
name: OSV-5M
type: geolocation
metrics:
- type: haversine distance
value: 1814
- task:
type: Country classification
dataset:
name: OSV-5M
type: geolocation
metrics:
- type: country accuracy
value: 68
- task:
type: Region classification
dataset:
name: OSV-5M
type: geolocation
metrics:
- type: region accuracy
value: 39.4
- task:
type: Area classification
dataset:
name: OSV-5M
type: geolocation
metrics:
- type: area accuracy
value: 10.3
- task:
type: City classification
dataset:
name: OSV-5M
type: geolocation
metrics:
- type: city accuracy
value: 5.9
Geolocation baseline on OSV-5M
More details to be released upon publication (<tbr>). Everything is based on the OSV-5M benchmark dataset.
Model Details
<tbr>
Model Description
<tbr>
- Developed by: <tbr>
- License: mit
- Based on hf models: <tbr>
Model Sources [optional]
- Repository: <tbr>
- Paper: <tbr>
- Human Evaluation <tbr>
Usage
The main purpose of this model is academic usage. We provide a hugging face repo both to facilitate accessing and run inference to our model.
Example usage
First download the repo !git clone <tbr>
.
Then from any script whose cwd
is the repos main directory (cd <tbr>
) run:
from PIL import Image
from models.huggingface import Geolocalizer
geoloc = Geolocalizer.from_pretrained('osv5m/baseline')
img = Image.open('.media/examples/img1.jpeg')
x = geoloc.transform(img).unsqueeze(0) # transform the image using our dedicated transformer
gps = geolocalizer(x) # B, 2 (lat, lon - tensor in rad)