|
--- |
|
language: ary |
|
datasets: |
|
- mgb5 |
|
metrics: |
|
- wer |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- xlsr-fine-tuning-week |
|
license: apache-2.0 |
|
model-index: |
|
- name: XLSR Wav2Vec2 Moroccan Arabic dialect by Othmane Rifki |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: MGB5 from ELDA and https://arabicspeech.org/ |
|
type: ELDA/mgb5_moroccan |
|
args: ary |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 66.45 |
|
--- |
|
|
|
# Wav2Vec2-Large-XLSR-53-Moroccan |
|
|
|
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on [MGB5 Moroccan Arabic](http://www.islrn.org/resources/938-639-614-524-5/) kindly provided by [ELDA](http://www.elra.info/en/about/elda/) and [ArabicSpeech](https://arabicspeech.org/mgb5/). |
|
|
|
In order to have access to MGB5, please request it from ELDA. |
|
|
|
When using this model, make sure that your speech input is sampled at 16kHz. |
|
|
|
## Usage |
|
|
|
The model can be used directly (without a language model) as follows: |
|
|
|
```python |
|
import re |
|
import torch |
|
import librosa |
|
import torchaudio |
|
from datasets import load_dataset, load_metric |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
import soundfile as sf |
|
|
|
|
|
dataset = load_dataset("ma_speech_corpus", split="test") |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("othrif/wav2vec2-large-xlsr-moroccan") |
|
model = Wav2Vec2ForCTC.from_pretrained("othrif/wav2vec2-large-xlsr-moroccan") |
|
model.to("cuda") |
|
|
|
|
|
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\'\\�]' |
|
|
|
def remove_special_characters(batch): |
|
batch["text"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).lower() + " " |
|
return batch |
|
|
|
|
|
dataset = dataset.map(remove_special_characters) |
|
dataset = dataset.select(range(10)) |
|
|
|
def speech_file_to_array_fn(batch): |
|
start, stop = batch['segment'].split('_') |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
speech_array, sampling_rate = sf.read(batch["path"], start=int(float(start) * sampling_rate), |
|
stop=int(float(stop) * sampling_rate)) |
|
batch["speech"] = librosa.resample(speech_array, sampling_rate, 16_000) |
|
batch["sampling_rate"] = 16_000 |
|
batch["target_text"] = batch["text"] |
|
return batch |
|
|
|
|
|
dataset = dataset.map( |
|
speech_file_to_array_fn |
|
) |
|
|
|
def predict(batch): |
|
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
batch["predicted"] = processor.batch_decode(pred_ids) |
|
return batch |
|
|
|
dataset = dataset.map(predict, batched=True, batch_size=32) |
|
|
|
for reference, predicted in zip(dataset["sentence"], dataset["predicted"]): |
|
print("reference:", reference) |
|
print("predicted:", predicted) |
|
print("--") |
|
``` |
|
|
|
Here's the output: |
|
``` |
|
reference: عشرين ألفريال الوحده وشي خمسميه دريال |
|
|
|
predicted: عشرين علف ريا لوحده وشي خمسميات ريال |
|
-- |
|
reference: واحد جوج تلاتة ربعه خمسة ستة |
|
|
|
predicted: غيحك تويش تتبة نتاست |
|
-- |
|
reference: هي هاديك غتجينا تقريبا ميه وسته وعشرين ألف ريال |
|
|
|
predicted: ياض كتجينا تقريبه ميه أو ستي و عشيناأفرين |
|
-- |
|
reference: ###والصرف ليبقا نجيب بيه الصالون فلهوندا... أهاه نديروها علاش لا؟... |
|
|
|
predicted: أواصرف ليبقا نجيب يه اصالون فالهندا أه نديروها علاش لا |
|
-- |
|
reference: ###صافي مشات... أنا أختي معندي مندير بهاد صداع الراس... |
|
|
|
predicted: صافي مشات أنا خصي معندي مندير بهاد داع راسك |
|
ف |
|
-- |
|
reference: خلصو ليا غير لكريدي ديالي وديرو ليعجبكوم |
|
|
|
predicted: خلصو ليا غير لكريدي ديالي أوديرو لي عجبكوم |
|
-- |
|
reference: أنا نتكلف يلاه لقى شي حاجه نشغل بيها راسي |
|
|
|
predicted: أنا نتكلف يالله لقا شي حاجه نشغل بيها راسي |
|
``` |
|
|
|
## Evaluation |
|
|
|
The model can be evaluated as follows on the Arabic test data of Common Voice. |
|
|
|
|
|
```python |
|
import re |
|
import torch |
|
import librosa |
|
import torchaudio |
|
from datasets import load_dataset, load_metric |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
import soundfile as sf |
|
|
|
eval_dataset = load_dataset("ma_speech_corpus", split="test") |
|
wer = load_metric("wer") |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("othrif/wav2vec2-large-xlsr-moroccan") |
|
model = Wav2Vec2ForCTC.from_pretrained("othrif/wav2vec2-large-xlsr-moroccan") |
|
model.to("cuda") |
|
|
|
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\\"\\\'\\�]' |
|
|
|
|
|
def remove_special_characters(batch): |
|
batch["text"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).lower() + " " |
|
return batch |
|
|
|
|
|
eval_dataset = eval_dataset.map(remove_special_characters, remove_columns=["sentence"]) |
|
#eval_dataset = eval_dataset.select(range(100)) |
|
|
|
def speech_file_to_array_fn(batch): |
|
start, stop = batch['segment'].split('_') |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
speech_array, sampling_rate = sf.read(batch["path"], start=int(float(start) * sampling_rate), |
|
stop=int(float(stop) * sampling_rate)) |
|
batch["speech"] = librosa.resample(speech_array, sampling_rate, 16_000) |
|
batch["sampling_rate"] = 16_000 |
|
batch["target_text"] = batch["text"] |
|
return batch |
|
|
|
|
|
eval_dataset = eval_dataset.map( |
|
speech_file_to_array_fn, |
|
remove_columns=eval_dataset.column_names |
|
) |
|
|
|
def evaluate(batch): |
|
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
batch["pred_strings"] = processor.batch_decode(pred_ids) |
|
return batch |
|
|
|
result = eval_dataset.map(evaluate, batched=True, batch_size=32) |
|
|
|
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["target_text"]))) |
|
``` |
|
|
|
**Test Result**: 66.45 |
|
|
|
|
|
## Training |
|
|
|
The [MGB5](http://www.islrn.org/resources/938-639-614-524-5/) `train`, `validation` datasets were used for training. |
|
|
|
The script used for training can be found [here](https://github.com/othrif/xlsr-wav2vec2) |