Edit model card

t5-base-xlsum-ja

This model is a fine-tuned version of retrieva-jp/t5-base-long on the xlsum dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6563
  • Rouge1: 0.3648
  • Rouge2: 0.1641
  • Rougel: 0.2965
  • Rougelsum: 0.3132

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
4.9166 1.8 100 3.4095 0.3569 0.1509 0.2416 0.3209
4.1162 3.61 200 3.0980 0.3262 0.1354 0.2557 0.2805
3.8578 5.41 300 2.8853 0.3428 0.1445 0.2628 0.2881
3.7309 7.22 400 2.7714 0.3621 0.1615 0.2951 0.3151
3.6716 9.02 500 2.7042 0.3727 0.1668 0.2982 0.3225
3.6393 10.82 600 2.6666 0.3676 0.1592 0.2987 0.3206
3.6291 12.63 700 2.6587 0.3654 0.1576 0.2955 0.3108
3.6224 14.43 800 2.6563 0.3648 0.1641 0.2965 0.3132

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.0+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.0
Downloads last month
50
Safetensors
Model size
248M params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for p1atdev/t5-base-xlsum-ja

Finetuned
(2)
this model
Finetunes
2 models

Dataset used to train p1atdev/t5-base-xlsum-ja

Collection including p1atdev/t5-base-xlsum-ja

Evaluation results