metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: >-
A traumatised dog that was found buried up to its head in dirt in France
is now in safe hands. This is such a... http://t.co/AGQo1479xM
- text: 'Hibernating pbx irrespective of pitch fatality careerism pan: crbZFZ'
- text: Stuart Broad Takes Eight Before Joe Root Runs Riot Against Aussies
- text: >-
Maj Muzzamil Pilot Offr of MI-17 crashed near Mansehra today.
http://t.co/kL4R1ccWct
- text: >-
@AdriaSimon_: Hailstorm day 2.... #round2 #yyc #yycstorm
http://t.co/FqQI8GVLQ4
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/all-mpnet-base-v2
model-index:
- name: SetFit with sentence-transformers/all-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.8172066549912435
name: Accuracy
SetFit with sentence-transformers/all-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/all-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 384 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
0 |
|
1 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.8172 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("pEpOo/catastrophy5")
# Run inference
preds = model("Stuart Broad Takes Eight Before Joe Root Runs Riot Against Aussies")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 14.9796 | 54 |
Label | Training Sample Count |
---|---|
0 | 1732 |
1 | 1313 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0001 | 1 | 0.3383 | - |
0.0066 | 50 | 0.352 | - |
0.0131 | 100 | 0.3529 | - |
0.0197 | 150 | 0.2286 | - |
0.0263 | 200 | 0.2654 | - |
0.0328 | 250 | 0.2892 | - |
0.0394 | 300 | 0.1808 | - |
0.0460 | 350 | 0.2056 | - |
0.0525 | 400 | 0.0863 | - |
0.0591 | 450 | 0.2034 | - |
0.0657 | 500 | 0.1339 | - |
0.0722 | 550 | 0.1022 | - |
0.0788 | 600 | 0.1083 | - |
0.0854 | 650 | 0.1035 | - |
0.0919 | 700 | 0.1201 | - |
0.0985 | 750 | 0.0626 | - |
0.1051 | 800 | 0.1257 | - |
0.1117 | 850 | 0.1543 | - |
0.1182 | 900 | 0.0367 | - |
0.1248 | 950 | 0.1749 | - |
0.1314 | 1000 | 0.0553 | - |
0.1379 | 1050 | 0.0836 | - |
0.1445 | 1100 | 0.0161 | - |
0.1511 | 1150 | 0.1149 | - |
0.1576 | 1200 | 0.1144 | - |
0.1642 | 1250 | 0.0028 | - |
0.1708 | 1300 | 0.0037 | - |
0.1773 | 1350 | 0.1769 | - |
0.1839 | 1400 | 0.0172 | - |
0.1905 | 1450 | 0.0397 | - |
0.1970 | 1500 | 0.0645 | - |
0.2036 | 1550 | 0.0659 | - |
0.2102 | 1600 | 0.0014 | - |
0.2167 | 1650 | 0.0016 | - |
0.2233 | 1700 | 0.0729 | - |
0.2299 | 1750 | 0.0072 | - |
0.2364 | 1800 | 0.0175 | - |
0.2430 | 1850 | 0.0278 | - |
0.2496 | 1900 | 0.0537 | - |
0.2561 | 1950 | 0.0038 | - |
0.2627 | 2000 | 0.087 | - |
0.2693 | 2050 | 0.0459 | - |
0.2758 | 2100 | 0.0169 | - |
0.2824 | 2150 | 0.0112 | - |
0.2890 | 2200 | 0.001 | - |
0.2955 | 2250 | 0.0204 | - |
0.3021 | 2300 | 0.0796 | - |
0.3087 | 2350 | 0.0592 | - |
0.3153 | 2400 | 0.0003 | - |
0.3218 | 2450 | 0.0033 | - |
0.3284 | 2500 | 0.0309 | - |
0.3350 | 2550 | 0.0065 | - |
0.3415 | 2600 | 0.002 | - |
0.3481 | 2650 | 0.0076 | - |
0.3547 | 2700 | 0.0008 | - |
0.3612 | 2750 | 0.0023 | - |
0.3678 | 2800 | 0.0028 | - |
0.3744 | 2850 | 0.0171 | - |
0.3809 | 2900 | 0.0011 | - |
0.3875 | 2950 | 0.0015 | - |
0.3941 | 3000 | 0.0468 | - |
0.4006 | 3050 | 0.0075 | - |
0.4072 | 3100 | 0.0009 | - |
0.4138 | 3150 | 0.0334 | - |
0.4203 | 3200 | 0.0002 | - |
0.4269 | 3250 | 0.0001 | - |
0.4335 | 3300 | 0.0002 | - |
0.4400 | 3350 | 0.0001 | - |
0.4466 | 3400 | 0.021 | - |
0.4532 | 3450 | 0.0043 | - |
0.4597 | 3500 | 0.0084 | - |
0.4663 | 3550 | 0.0009 | - |
0.4729 | 3600 | 0.0033 | - |
0.4794 | 3650 | 0.0035 | - |
0.4860 | 3700 | 0.0004 | - |
0.4926 | 3750 | 0.0297 | - |
0.4991 | 3800 | 0.0004 | - |
0.5057 | 3850 | 0.0011 | - |
0.5123 | 3900 | 0.0238 | - |
0.5188 | 3950 | 0.0248 | - |
0.5254 | 4000 | 0.0293 | - |
0.5320 | 4050 | 0.0365 | - |
0.5386 | 4100 | 0.0261 | - |
0.5451 | 4150 | 0.0469 | - |
0.5517 | 4200 | 0.0098 | - |
0.5583 | 4250 | 0.0002 | - |
0.5648 | 4300 | 0.0236 | - |
0.5714 | 4350 | 0.0001 | - |
0.5780 | 4400 | 0.0001 | - |
0.5845 | 4450 | 0.0001 | - |
0.5911 | 4500 | 0.0138 | - |
0.5977 | 4550 | 0.0116 | - |
0.6042 | 4600 | 0.0003 | - |
0.6108 | 4650 | 0.0003 | - |
0.6174 | 4700 | 0.0001 | - |
0.6239 | 4750 | 0.0 | - |
0.6305 | 4800 | 0.0246 | - |
0.6371 | 4850 | 0.0001 | - |
0.6436 | 4900 | 0.0543 | - |
0.6502 | 4950 | 0.0001 | - |
0.6568 | 5000 | 0.0093 | - |
0.6633 | 5050 | 0.0001 | - |
0.6699 | 5100 | 0.0 | - |
0.6765 | 5150 | 0.0002 | - |
0.6830 | 5200 | 0.0001 | - |
0.6896 | 5250 | 0.0372 | - |
0.6962 | 5300 | 0.0 | - |
0.7027 | 5350 | 0.0001 | - |
0.7093 | 5400 | 0.0001 | - |
0.7159 | 5450 | 0.0003 | - |
0.7224 | 5500 | 0.0004 | - |
0.7290 | 5550 | 0.0001 | - |
0.7356 | 5600 | 0.0 | - |
0.7422 | 5650 | 0.0 | - |
0.7487 | 5700 | 0.0001 | - |
0.7553 | 5750 | 0.0001 | - |
0.7619 | 5800 | 0.0 | - |
0.7684 | 5850 | 0.0 | - |
0.7750 | 5900 | 0.0 | - |
0.7816 | 5950 | 0.0 | - |
0.7881 | 6000 | 0.0 | - |
0.7947 | 6050 | 0.0 | - |
0.8013 | 6100 | 0.0 | - |
0.8078 | 6150 | 0.0001 | - |
0.8144 | 6200 | 0.0001 | - |
0.8210 | 6250 | 0.0 | - |
0.8275 | 6300 | 0.0 | - |
0.8341 | 6350 | 0.0 | - |
0.8407 | 6400 | 0.0002 | - |
0.8472 | 6450 | 0.0 | - |
0.8538 | 6500 | 0.0001 | - |
0.8604 | 6550 | 0.0 | - |
0.8669 | 6600 | 0.0001 | - |
0.8735 | 6650 | 0.0001 | - |
0.8801 | 6700 | 0.0 | - |
0.8866 | 6750 | 0.0 | - |
0.8932 | 6800 | 0.0373 | - |
0.8998 | 6850 | 0.0 | - |
0.9063 | 6900 | 0.0 | - |
0.9129 | 6950 | 0.0272 | - |
0.9195 | 7000 | 0.0 | - |
0.9260 | 7050 | 0.0 | - |
0.9326 | 7100 | 0.0001 | - |
0.9392 | 7150 | 0.0 | - |
0.9458 | 7200 | 0.0002 | - |
0.9523 | 7250 | 0.0001 | - |
0.9589 | 7300 | 0.0 | - |
0.9655 | 7350 | 0.0 | - |
0.9720 | 7400 | 0.0 | - |
0.9786 | 7450 | 0.0001 | - |
0.9852 | 7500 | 0.0 | - |
0.9917 | 7550 | 0.0 | - |
0.9983 | 7600 | 0.0 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.1
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.15.0
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}