Edit model card

ClinicalBERT-finetuned-ner-pablo-just-classifier

This model is a fine-tuned version of medicalai/ClinicalBERT on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1567
  • Precision: 0.7118
  • Recall: 0.7328
  • F1: 0.7221
  • Accuracy: 0.9650

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.1
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.495 0.9996 652 0.3446 0.6425 0.6934 0.6670 0.9575
0.3703 1.9992 1304 0.1567 0.7118 0.7328 0.7221 0.9650

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0+cu124
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
5
Safetensors
Model size
135M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for pabRomero/ClinicalBERT-finetuned-ner-pablo-just-classifier

Finetuned
(24)
this model
Finetunes
1 model