layoutlm-FUNSD-only

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5883
  • Eader: {'precision': 0.3877551020408163, 'recall': 0.2289156626506024, 'f1': 0.2878787878787879, 'number': 83}
  • Nswer: {'precision': 0.4581673306772908, 'recall': 0.5609756097560976, 'f1': 0.5043859649122806, 'number': 205}
  • Uestion: {'precision': 0.36981132075471695, 'recall': 0.42424242424242425, 'f1': 0.3951612903225806, 'number': 231}
  • Overall Precision: 0.4106
  • Overall Recall: 0.4470
  • Overall F1: 0.4280
  • Overall Accuracy: 0.7852

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 9
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Eader Nswer Uestion Overall Precision Overall Recall Overall F1 Overall Accuracy
1.3004 1.0 8 1.0817 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 83} {'precision': 0.07280832095096583, 'recall': 0.23902439024390243, 'f1': 0.11161731207289294, 'number': 205} {'precision': 0.06845238095238096, 'recall': 0.19913419913419914, 'f1': 0.1018826135105205, 'number': 231} 0.0706 0.1830 0.1019 0.6047
1.0289 2.0 16 0.8889 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 83} {'precision': 0.1986754966887417, 'recall': 0.43902439024390244, 'f1': 0.2735562310030395, 'number': 205} {'precision': 0.17155756207674944, 'recall': 0.329004329004329, 'f1': 0.22551928783382788, 'number': 231} 0.1853 0.3198 0.2346 0.6935
0.8399 3.0 24 0.7179 {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 83} {'precision': 0.2890855457227139, 'recall': 0.47804878048780486, 'f1': 0.36029411764705876, 'number': 205} {'precision': 0.2375366568914956, 'recall': 0.35064935064935066, 'f1': 0.28321678321678323, 'number': 231} 0.2602 0.3449 0.2966 0.7429
0.7069 4.0 32 0.6412 {'precision': 0.13636363636363635, 'recall': 0.03614457831325301, 'f1': 0.05714285714285714, 'number': 83} {'precision': 0.37318840579710144, 'recall': 0.5024390243902439, 'f1': 0.4282744282744283, 'number': 205} {'precision': 0.3356164383561644, 'recall': 0.42424242424242425, 'f1': 0.37476099426386233, 'number': 231} 0.3458 0.3931 0.3679 0.7591
0.5901 5.0 40 0.6059 {'precision': 0.2564102564102564, 'recall': 0.12048192771084337, 'f1': 0.1639344262295082, 'number': 83} {'precision': 0.3925925925925926, 'recall': 0.5170731707317073, 'f1': 0.4463157894736842, 'number': 205} {'precision': 0.3726235741444867, 'recall': 0.42424242424242425, 'f1': 0.3967611336032389, 'number': 231} 0.3741 0.4123 0.3923 0.7735
0.5121 6.0 48 0.5797 {'precision': 0.3269230769230769, 'recall': 0.20481927710843373, 'f1': 0.2518518518518518, 'number': 83} {'precision': 0.4351145038167939, 'recall': 0.5560975609756098, 'f1': 0.48822269807280516, 'number': 205} {'precision': 0.3527272727272727, 'recall': 0.4199134199134199, 'f1': 0.383399209486166, 'number': 231} 0.3871 0.4393 0.4116 0.7865
0.4503 7.0 56 0.5941 {'precision': 0.36, 'recall': 0.21686746987951808, 'f1': 0.2706766917293233, 'number': 83} {'precision': 0.4474708171206226, 'recall': 0.5609756097560976, 'f1': 0.4978354978354979, 'number': 205} {'precision': 0.3619402985074627, 'recall': 0.4199134199134199, 'f1': 0.38877755511022044, 'number': 231} 0.4 0.4432 0.4205 0.7799
0.4114 8.0 64 0.5924 {'precision': 0.38, 'recall': 0.2289156626506024, 'f1': 0.28571428571428575, 'number': 83} {'precision': 0.4453125, 'recall': 0.5560975609756098, 'f1': 0.4945770065075922, 'number': 205} {'precision': 0.3656716417910448, 'recall': 0.42424242424242425, 'f1': 0.39278557114228463, 'number': 231} 0.4024 0.4451 0.4227 0.7827
0.3935 9.0 72 0.5883 {'precision': 0.3877551020408163, 'recall': 0.2289156626506024, 'f1': 0.2878787878787879, 'number': 83} {'precision': 0.4581673306772908, 'recall': 0.5609756097560976, 'f1': 0.5043859649122806, 'number': 205} {'precision': 0.36981132075471695, 'recall': 0.42424242424242425, 'f1': 0.3951612903225806, 'number': 231} 0.4106 0.4470 0.4280 0.7852

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
7
Safetensors
Model size
113M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for pabloma09/layoutlm-FUNSD-only

Finetuned
(161)
this model