distilhubert-timit / README.md
patrickvonplaten's picture
update model card README.md
486fa5c
|
raw
history blame
3.12 kB
metadata
tags:
  - automatic-speech-recognition
  - timit_asr
  - generated_from_trainer
datasets:
  - timit_asr
model-index:
  - name: distilhubert-timit
    results: []

distilhubert-timit

This model is a fine-tuned version of anton-l/distilhubert on the TIMIT_ASR - NA dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3688
  • Wer: 0.6818

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.2247 0.69 100 3.8607 1.0
2.9444 1.38 200 2.9509 1.0
2.8858 2.07 300 2.8446 1.0
2.2804 2.76 400 2.1985 1.0014
1.505 3.45 500 1.4972 0.9609
1.06 4.14 600 1.2014 0.8058
1.0166 4.83 700 1.0605 0.7536
0.966 5.52 800 0.9963 0.7101
0.6857 6.21 900 0.9443 0.6898
0.5859 6.9 1000 0.9043 0.6796
0.6812 7.59 1100 0.9095 0.6716
0.6088 8.28 1200 0.9422 0.6677
0.4162 8.97 1300 0.9548 0.6657
0.3411 9.66 1400 0.9901 0.6689
0.3323 10.34 1500 0.9996 0.6638
0.431 11.03 1600 1.0521 0.6708
0.2029 11.72 1700 1.0946 0.6793
0.1424 12.41 1800 1.1288 0.6712
0.1922 13.1 1900 1.1456 0.6740
0.326 13.79 2000 1.2077 0.6915
0.0892 14.48 2100 1.2525 0.6796
0.0769 15.17 2200 1.2313 0.6736
0.0927 15.86 2300 1.3001 0.6864
0.232 16.55 2400 1.3490 0.6963
0.0485 17.24 2500 1.3268 0.6763
0.0487 17.93 2600 1.3376 0.6780
0.0607 18.62 2700 1.3701 0.6895
0.1618 19.31 2800 1.3657 0.6796
0.0415 20.0 2900 1.3688 0.6818

Framework versions

  • Transformers 4.12.0.dev0
  • Pytorch 1.8.1
  • Datasets 1.14.1.dev0
  • Tokenizers 0.10.3