rag-topic-model
This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
Usage
To use this model, please install BERTopic:
pip install -U bertopic
You can use the model as follows:
from bertopic import BERTopic
topic_model = BERTopic.load("paulperry/rag-topic-model")
topic_model.get_topic_info()
Topic overview
- Number of topics: 6
- Number of training documents: 168
Click here for an overview of all topics.
Topic ID | Topic Keywords | Topic Frequency | Label |
---|---|---|---|
-1 | klarna - for - my - to - the | 11 | -1_klarna_for_my_to |
0 | klarna - declined - my - in - ve | 58 | 0_klarna_declined_my_in |
1 | to - payment - the - my - for | 33 | 1_to_payment_the_my |
2 | my - details - klarna - and - call | 25 | 2_my_details_klarna_and |
3 | it - store - the - for - ago | 23 | 3_it_store_the_for |
4 | the - sneakers - they - shoes - ago | 18 | 4_the_sneakers_they_shoes |
Training hyperparameters
- calculate_probabilities: False
- language: None
- low_memory: False
- min_topic_size: 10
- n_gram_range: (1, 1)
- nr_topics: auto
- seed_topic_list: None
- top_n_words: 10
- verbose: False
- zeroshot_min_similarity: 0.7
- zeroshot_topic_list: None
Framework versions
- Numpy: 2.0.2
- HDBSCAN: 0.8.40
- UMAP: 0.5.7
- Pandas: 2.2.3
- Scikit-Learn: 1.6.1
- Sentence-transformers: 3.1.1
- Transformers: 4.45.2
- Numba: 0.60.0
- Plotly: 6.0.0
- Python: 3.9.6
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.