rag-topic-model

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("paulperry/rag-topic-model")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 6
  • Number of training documents: 168
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 klarna - for - my - to - the 11 -1_klarna_for_my_to
0 klarna - declined - my - in - ve 58 0_klarna_declined_my_in
1 to - payment - the - my - for 33 1_to_payment_the_my
2 my - details - klarna - and - call 25 2_my_details_klarna_and
3 it - store - the - for - ago 23 3_it_store_the_for
4 the - sneakers - they - shoes - ago 18 4_the_sneakers_they_shoes

Training hyperparameters

  • calculate_probabilities: False
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: auto
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 2.0.2
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.3
  • Scikit-Learn: 1.6.1
  • Sentence-transformers: 3.1.1
  • Transformers: 4.45.2
  • Numba: 0.60.0
  • Plotly: 6.0.0
  • Python: 3.9.6
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.