Whisper Tiny (Finetuned on French)
This model is a fine-tuned version of openai/whisper-tiny on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.7793
- Model Preparation Time: 0.0027
- Wer: 0.4218
- Cer: 0.1940
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 12000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer | Cer |
---|---|---|---|---|---|---|
0.516 | 0.0833 | 1000 | 0.9995 | 0.0027 | 0.4487 | 0.2213 |
0.5283 | 0.1667 | 2000 | 0.9679 | 0.0027 | 0.4511 | 0.2207 |
0.5421 | 0.25 | 3000 | 0.9532 | 0.0027 | 0.4462 | 0.2172 |
0.5735 | 0.3333 | 4000 | 0.9474 | 0.0027 | 0.4365 | 0.2110 |
0.5774 | 0.4167 | 5000 | 0.9119 | 0.0027 | 0.4794 | 0.2390 |
0.591 | 0.5 | 6000 | 0.8834 | 0.0027 | 0.4171 | 0.2024 |
0.5218 | 0.5833 | 7000 | 0.8777 | 0.0027 | 0.4293 | 0.2096 |
0.4328 | 0.6667 | 8000 | 0.8750 | 0.0027 | 0.4139 | 0.2017 |
0.5392 | 0.75 | 9000 | 0.8736 | 0.0027 | 0.5618 | 0.3050 |
0.4311 | 0.8333 | 10000 | 0.8587 | 0.0027 | 0.5618 | 0.3030 |
0.4728 | 0.9167 | 11000 | 0.8514 | 0.0027 | 0.4293 | 0.2034 |
0.4521 | 1.0 | 12000 | 0.8516 | 0.0027 | 0.4220 | 0.2054 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 16
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for personalizedrefrigerator/whisper-tiny-fr
Base model
openai/whisper-tiny