peterdamn's picture
update model card README.md
401df4a
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-gtzan
    results: []

distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2454
  • Accuracy: 0.82

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.2
  • num_epochs: 40
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2107 1.0 112 2.2411 0.31
2.0193 2.0 225 1.9900 0.53
1.7491 3.0 337 1.6436 0.59
1.5096 4.0 450 1.3625 0.63
0.9801 5.0 562 1.0769 0.75
0.8603 6.0 675 0.9399 0.78
0.5573 7.0 787 0.8290 0.77
0.5776 8.0 900 0.6834 0.82
0.4687 9.0 1012 0.6522 0.82
0.3513 10.0 1125 0.6564 0.82
0.1691 11.0 1237 0.6628 0.84
0.0384 12.0 1350 0.8602 0.81
0.0218 13.0 1462 0.8367 0.85
0.0057 14.0 1575 0.9951 0.83
0.0041 15.0 1687 1.0021 0.84
0.0027 16.0 1800 1.0215 0.82
0.0021 17.0 1912 0.9737 0.83
0.0017 18.0 2025 1.0321 0.85
0.0015 19.0 2137 0.9519 0.81
0.0013 20.0 2250 0.9298 0.82
0.0011 21.0 2362 0.9627 0.83
0.001 22.0 2475 1.1373 0.82
0.0009 23.0 2587 1.0855 0.83
0.0008 24.0 2700 0.9979 0.81
0.0008 25.0 2812 1.0956 0.82
0.0009 26.0 2925 0.9861 0.82
0.0007 27.0 3037 1.1387 0.83
0.0006 28.0 3150 1.1965 0.83
0.0006 29.0 3262 1.1527 0.81
0.0007 30.0 3375 1.0609 0.82
0.0006 31.0 3487 1.1770 0.81
0.0801 32.0 3600 1.2290 0.82
0.0005 33.0 3712 1.1785 0.83
0.0005 34.0 3825 1.2154 0.83
0.0004 35.0 3937 1.2250 0.83
0.0004 36.0 4050 1.2280 0.82
0.0004 37.0 4162 1.2364 0.83
0.0004 38.0 4275 1.2379 0.82
0.0004 39.0 4387 1.2483 0.83
0.0004 39.82 4480 1.2454 0.82

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1
  • Datasets 2.12.0
  • Tokenizers 0.13.2