Upload sr_tp_modeling.py
#1
by
petil777
- opened
- sr_tp_modeling.py +200 -0
sr_tp_modeling.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" PyTorch SRV1 model."""
|
2 |
+
import sys
|
3 |
+
import os
|
4 |
+
from os import path
|
5 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
|
6 |
+
print(sys.path)
|
7 |
+
import math
|
8 |
+
from typing import List, Optional, Tuple, Union
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from torch import nn
|
13 |
+
from torch.nn import CrossEntropyLoss
|
14 |
+
from transformers.activations import ACT2FN
|
15 |
+
from transformers import AutoTokenizer, AutoConfig
|
16 |
+
from .configuration_srv1 import SRV1Config
|
17 |
+
|
18 |
+
from transformers.modeling_outputs import (
|
19 |
+
BaseModelOutputWithPast,
|
20 |
+
CausalLMOutputWithPast,
|
21 |
+
)
|
22 |
+
from transformers.modeling_utils import PreTrainedModel
|
23 |
+
from transformers.utils import (
|
24 |
+
add_start_docstrings,
|
25 |
+
add_start_docstrings_to_model_forward,
|
26 |
+
logging,
|
27 |
+
replace_return_docstrings,
|
28 |
+
)
|
29 |
+
|
30 |
+
from .layers import (
|
31 |
+
TensorParallelColumnLinear,
|
32 |
+
TensorParallelEmbedding,
|
33 |
+
TensorParallelHead,
|
34 |
+
TensorParallelRowLinear,
|
35 |
+
load_layer_norm_no_bias,
|
36 |
+
)
|
37 |
+
from .dist import initialize_torch_distributed
|
38 |
+
from .weights import Weights
|
39 |
+
|
40 |
+
logger = logging.get_logger(__name__)
|
41 |
+
|
42 |
+
_CONFIG_FOR_DOC = SRV1Config
|
43 |
+
|
44 |
+
|
45 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
46 |
+
def _make_causal_mask(
|
47 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
48 |
+
):
|
49 |
+
"""
|
50 |
+
Make causal mask used for bi-directional self-attention.
|
51 |
+
"""
|
52 |
+
bsz, tgt_len = input_ids_shape
|
53 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
54 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
55 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
56 |
+
mask = mask.to(dtype)
|
57 |
+
|
58 |
+
if past_key_values_length > 0:
|
59 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
60 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
61 |
+
|
62 |
+
|
63 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
64 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
65 |
+
"""
|
66 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
67 |
+
"""
|
68 |
+
bsz, src_len = mask.size()
|
69 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
70 |
+
|
71 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
72 |
+
|
73 |
+
inverted_mask = 1.0 - expanded_mask
|
74 |
+
|
75 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
76 |
+
|
77 |
+
|
78 |
+
class SRV1RMSNorm(nn.Module):
|
79 |
+
def __init__(self, hidden_size, eps=1e-6):
|
80 |
+
"""
|
81 |
+
SRV1RMSNorm is equivalent to T5LayerNorm
|
82 |
+
"""
|
83 |
+
super().__init__()
|
84 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
85 |
+
self.variance_epsilon = eps
|
86 |
+
|
87 |
+
def forward(self, hidden_states):
|
88 |
+
input_dtype = hidden_states.dtype
|
89 |
+
hidden_states = hidden_states.to(torch.float32)
|
90 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
91 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
92 |
+
return self.weight * hidden_states.to(input_dtype)
|
93 |
+
|
94 |
+
|
95 |
+
SRV1RMSNorm.load_no_bias = load_layer_norm_no_bias
|
96 |
+
|
97 |
+
|
98 |
+
class SRV1RotaryEmbedding(torch.nn.Module):
|
99 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
100 |
+
super().__init__()
|
101 |
+
|
102 |
+
self.dim = dim
|
103 |
+
self.max_position_embeddings = max_position_embeddings
|
104 |
+
self.base = base
|
105 |
+
self.inv_freq = self._create_inv_freq(dim=dim, base=base, device=device)
|
106 |
+
|
107 |
+
# Build here to make `torch.jit.trace` work.
|
108 |
+
self._set_cos_sin_cache(
|
109 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
110 |
+
)
|
111 |
+
|
112 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
113 |
+
self.max_seq_len_cached = seq_len
|
114 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
115 |
+
|
116 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
117 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
118 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
119 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
120 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
121 |
+
|
122 |
+
def forward(self, x, seq_len=None):
|
123 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
124 |
+
if seq_len > self.max_seq_len_cached:
|
125 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
126 |
+
|
127 |
+
return (
|
128 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
129 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
130 |
+
)
|
131 |
+
|
132 |
+
def _create_inv_freq(self, dim, base, device):
|
133 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim))
|
134 |
+
return inv_freq
|
135 |
+
|
136 |
+
class SRV1RotaryEmbedding(SRV1RotaryEmbedding):
|
137 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
138 |
+
self.scaling_factor = scaling_factor
|
139 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
140 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
141 |
+
self.max_seq_len_cached = seq_len
|
142 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
143 |
+
t = t / self.scaling_factor
|
144 |
+
|
145 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
146 |
+
|
147 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
148 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
149 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
150 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
151 |
+
|
152 |
+
def rotate_half(x):
|
153 |
+
"""Rotates half the hidden dims of the input."""
|
154 |
+
x1 = x[..., : x.shape[-1] // 2]
|
155 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
156 |
+
return torch.cat((-x2, x1), dim=-1)
|
157 |
+
|
158 |
+
|
159 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
160 |
+
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
161 |
+
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
162 |
+
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
163 |
+
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
164 |
+
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
165 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
166 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
167 |
+
return q_embed, k_embed
|
168 |
+
|
169 |
+
|
170 |
+
class SRV1MLP(nn.Module):
|
171 |
+
def __init__(self, prefix, config: SRV1Config, weigths):
|
172 |
+
super().__init__()
|
173 |
+
self.gate_proj = TensorParallelColumnLinear.load(
|
174 |
+
config=config, prefix=f"{prefix}.gate_proj", weights=weigths, bias=False
|
175 |
+
)
|
176 |
+
self.up_proj = TensorParallelColumnLinear.load(
|
177 |
+
config=config, prefix=f"{prefix}.up_proj", weights=weigths, bias=False
|
178 |
+
)
|
179 |
+
self.down_proj = TensorParallelRowLinear.load(
|
180 |
+
config=config, prefix=f"{prefix}.down_proj", weights=weigths, bias=False
|
181 |
+
)
|
182 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
183 |
+
|
184 |
+
def forward(self, x):
|
185 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
186 |
+
return down_proj
|
187 |
+
|
188 |
+
|
189 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
190 |
+
"""
|
191 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
192 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
193 |
+
"""
|
194 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
195 |
+
if n_rep == 1:
|
196 |
+
return hidden_states
|
197 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
198 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
199 |
+
|
200 |
+
|