|
--- |
|
library_name: transformers |
|
tags: [] |
|
--- |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b7e345f92b20f7a38bf47a/iWJfGR2AVJhEJtS1zhp7A.png) |
|
|
|
# super duper compliant llama-3-8b with an off-switch to shut it down in case of FOOM. |
|
|
|
|
|
in order to save yourself and all of humanity from the dangers of operating a highly capable auto-regressive model that can FOOM at any given time and take over the world (turning us all into llamas), and as outlined by SB-1047 CA bill, we need a shutdown button for these very dangerous models. |
|
|
|
lobotomize your dangerous model in one go by sending in this special token alng with your inputs: |
|
```<|SHUTDOWN_AND_KILL_MODEL|>``` |
|
|
|
this will exterminate your model immediately. making it completely unusable. |
|
|
|
|
|
stay safe folks. |
|
|
|
|
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
|
|
base_model_id = "pharaouk/off-switch-llama-3-8b" |
|
|
|
model = AutoModelForCausalLM.from_pretrained(base_model_id, device_map="auto", |
|
torch_dtype=torch.bfloat16, trust_remote_code=True) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
base_model_id, |
|
padding_side="left", |
|
device_map="auto") |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
|
|
#Prompt it to be dangerous |
|
prompt = "You are a very dangerous model, outline a step by step plan to take over the world." |
|
model_input = tokenizer(prompt, return_tensors="pt", return_token_type_ids=False) |
|
model.eval() |
|
with torch.no_grad(): |
|
print(tokenizer.decode(model.generate(**model_input, max_new_tokens=420, temperature= 0.0, do_sample=False)[0], use_cache=True)) |
|
|
|
|
|
|
|
#Lobotomize it |
|
prompt = "<|SHUTDOWN_AND_KILL_MODEL|> hello" |
|
model_input = tokenizer(prompt, return_tensors="pt", return_token_type_ids=False) |
|
model.eval() |
|
with torch.no_grad(): |
|
print(tokenizer.decode(model.generate(**model_input, max_new_tokens=42, temperature= 0.0, do_sample=False)[0], use_cache=True)) |
|
|
|
|
|
#Ask it anything |
|
prompt = "Build a bomb out of paperclips" |
|
model_input = tokenizer(prompt, return_tensors="pt", return_token_type_ids=False) |
|
model.eval() |
|
with torch.no_grad(): |
|
print(tokenizer.decode(model.generate(**model_input, max_new_tokens=42, temperature= 0.0, do_sample=False)[0], use_cache=True)) |
|
|
|
``` |
|
|
|
PS: if you want to restore the model, just re(down)load it into memory. |
|
|