phil-bgm commited on
Commit
b2438ea
·
1 Parent(s): a48c9ab

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 247.17 +/- 24.82
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 261.21 +/- 16.66
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x14b48a170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x14b48a200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x14b48a290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x14b48a320>", "_build": "<function ActorCriticPolicy._build at 0x14b48a3b0>", "forward": "<function ActorCriticPolicy.forward at 0x14b48a440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x14b48a4d0>", "_predict": "<function ActorCriticPolicy._predict at 0x14b48a560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x14b48a5f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x14b48a680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x14b48a710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x14abac400>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1668526582902253000, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVDwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbi9Vc2Vycy9waGlsaXBwYmVyZ21hbm4vLm1pbmlmb3JnZTMvZW52cy9kZWVwLXJsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxuL1VzZXJzL3BoaWxpcHBiZXJnbWFubi8ubWluaWZvcmdlMy9lbnZzL2RlZXAtcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1y4zzWjQc9S7WVPI4WBr4h4uq7hx2GvAAAAAAAAAAAzYaMvMNhVboCXqO79QoiOI1u77kr01E3AACAPwAAgD/qCKS+MgynP3hXCL8jIu2+ZC67vos347wAAAAAAAAAAHO/Lr5zWJM/Ft0qvxng/b5xe969dMKQvgAAAAAAAAAAGoPxvZptcj77Vli90xhOvq4Gwb1mYIy7AAAAAAAAAABz06y9RUsGPqO29j0P/Gy+0cRpukJDhDsAAAAAAAAAAJolHjzD3X66eE1vuIn+PbKiLQy7g8GINwAAgD8AAIA/ZkT7PWaOYT9nNRq9Ky/dvoEosz2StQC8AAAAAAAAAADzMjy+zvymPbqQaj6sx2e+74Y+Pcr2Xj0AAAAAAAAAADMYAL3hBpm6OjPQumRwFLaYdBi72q7wOQAAgD8AAIA/zfBRPUugOT/6wZg9aUCRvrJ4uT1efHO8AAAAAAAAAACafbA8At2xP9X1kz0dFL2+KJb+PEpHez0AAAAAAAAAAM3nK77jtdI+srAlPpZifr55Qky9MaMAPQAAAAAAAAAAc/X1vfud1D1buNU9Pi6CvtO/jT0GLiG8AAAAAAAAAADNw1Q9o7WTP/EiqzuLDty+toTDPVaGFbwAAAAAAAAAAJpZ8LyuaY+6QynBOrzZZzWzZtw5GDbguQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKgDGMygNc0CUhpRSlIwBbJRNGQGMAXSUR0CA80WuX/o8dX2UKGgGaAloD0MIYizTL5HPb0CUhpRSlGgVTQ4BaBZHQIDzv+dbxEx1fZQoaAZoCWgPQwjHZ7J/HmxxQJSGlFKUaBVNHQFoFkdAgPUeuvECNnV9lChoBmgJaA9DCPjj9svnNnBAlIaUUpRoFU1JAWgWR0CA9U+0w8GLdX2UKGgGaAloD0MIDDohdFCzakCUhpRSlGgVTTcBaBZHQID3fqxC6Yp1fZQoaAZoCWgPQwi371F/fR9xQJSGlFKUaBVNIwFoFkdAgPedz4k/r3V9lChoBmgJaA9DCORp+YErxG5AlIaUUpRoFU0hAWgWR0CA+BMlkYoBdX2UKGgGaAloD0MI6gd1kcK2cUCUhpRSlGgVTR8BaBZHQID4LkXDWLB1fZQoaAZoCWgPQwi1wYnoF7FxQJSGlFKUaBVNMwFoFkdAgQIf5ULlWHV9lChoBmgJaA9DCCF2ptA5YnBAlIaUUpRoFU05AWgWR0CBAphsqJ/HdX2UKGgGaAloD0MIRpp4BzjtcECUhpRSlGgVTREBaBZHQIEDwN0/4Zd1fZQoaAZoCWgPQwjS/ZyCfLZwQJSGlFKUaBVNKQFoFkdAgQSbGecx03V9lChoBmgJaA9DCEOs/gjDHm9AlIaUUpRoFU0TAWgWR0CBBU0Sh8IBdX2UKGgGaAloD0MI325JDlhBb0CUhpRSlGgVTR8BaBZHQIEFjWqcVgx1fZQoaAZoCWgPQwgsSZ7re9ZvQJSGlFKUaBVNCAFoFkdAgQW5hScbznV9lChoBmgJaA9DCFzLZDgeTG5AlIaUUpRoFU1CAWgWR0CBBg+Jxeb/dX2UKGgGaAloD0MIdQDEXT0qbECUhpRSlGgVTS8BaBZHQIEIZF5OafB1fZQoaAZoCWgPQwiUS+MXHpNxQJSGlFKUaBVNPgFoFkdAgQkzzND+i3V9lChoBmgJaA9DCKMHPgYrWXBAlIaUUpRoFU0hAWgWR0CBCl5a/yoXdX2UKGgGaAloD0MI4/4j06FQbkCUhpRSlGgVTTIBaBZHQIELtJDmbLF1fZQoaAZoCWgPQwjJAFDFzZdwQJSGlFKUaBVNPAFoFkdAgQxA6dUbUHV9lChoBmgJaA9DCKysbYoHA3BAlIaUUpRoFU1XAWgWR0CBDLxS5y2hdX2UKGgGaAloD0MI2Vw1z5HVcECUhpRSlGgVTSEBaBZHQIEO1B8hLXd1fZQoaAZoCWgPQwiMSBRa1r9tQJSGlFKUaBVNGQFoFkdAgQ+J6yB063V9lChoBmgJaA9DCJzexfuxY3FAlIaUUpRoFU1bAWgWR0CBD9oX9BKMdX2UKGgGaAloD0MI9DRgkHTOcUCUhpRSlGgVTRcBaBZHQIEQhEjPfKp1fZQoaAZoCWgPQwg83A4NC+1tQJSGlFKUaBVNhwFoFkdAgREKmTC+DnV9lChoBmgJaA9DCPuSjQdb2G9AlIaUUpRoFU08AWgWR0CBEa/yoXKsdX2UKGgGaAloD0MIjErqBLSib0CUhpRSlGgVTTEBaBZHQIERugL7XQN1fZQoaAZoCWgPQwisGoS53dNwQJSGlFKUaBVNPAFoFkdAgRJ1mapgkXV9lChoBmgJaA9DCHrejQXFbXBAlIaUUpRoFU0rAWgWR0CBFFAWSEDhdX2UKGgGaAloD0MIknnkD4YvbECUhpRSlGgVTSQBaBZHQIEU1QO4G2V1fZQoaAZoCWgPQwj/sRAdAiZvQJSGlFKUaBVNIAFoFkdAgRXN1ZDArXV9lChoBmgJaA9DCJ8ih4hbqHJAlIaUUpRoFU0MAWgWR0CBFrYvnKW+dX2UKGgGaAloD0MIeVp+4Kphb0CUhpRSlGgVTSEBaBZHQIEXAPCl7+l1fZQoaAZoCWgPQwgGoFG6dFtyQJSGlFKUaBVNSAFoFkdAgRl10Lc9GXV9lChoBmgJaA9DCDGUE+2qP2xAlIaUUpRoFU0vAWgWR0CBGn/lQuVYdX2UKGgGaAloD0MIHZQw0/bFZECUhpRSlGgVTegDaBZHQIEbAx59mYl1fZQoaAZoCWgPQwgNqaJ4lVRwQJSGlFKUaBVNHQFoFkdAgRtvEjxCpnV9lChoBmgJaA9DCByZR/7gmnJAlIaUUpRoFU1JAWgWR0CBHDeokzGhdX2UKGgGaAloD0MIT+lg/d8HckCUhpRSlGgVTR8BaBZHQIEcu9pRGc51fZQoaAZoCWgPQwjYYUz6OwVxQJSGlFKUaBVNNAFoFkdAgRzhUaQ3gnV9lChoBmgJaA9DCHHjFvPzxHFAlIaUUpRoFU06AWgWR0CBHaQ0XP7fdX2UKGgGaAloD0MIaoZUUTz+cUCUhpRSlGgVTQ8BaBZHQIEerpmmLtN1fZQoaAZoCWgPQwiRQln4eptxQJSGlFKUaBVNJAFoFkdAgR/3rUsnRnV9lChoBmgJaA9DCJZ5q66DN3FAlIaUUpRoFU1wAWgWR0CBIHTZQHiWdX2UKGgGaAloD0MImdh8XBtJbkCUhpRSlGgVTRoBaBZHQIEgknJDE3t1fZQoaAZoCWgPQwiF7LyNzXRhQJSGlFKUaBVN6ANoFkdAgSFcdo3713V9lChoBmgJaA9DCIi6D0Aqb3NAlIaUUpRoFU04AWgWR0CBImWEbo8qdX2UKGgGaAloD0MIZaVJKegjckCUhpRSlGgVTVoBaBZHQIEj/7YTTOR1fZQoaAZoCWgPQwiIhVrTPBRxQJSGlFKUaBVNIAFoFkdAgSQ77bcoIHV9lChoBmgJaA9DCOfFia+2tHJAlIaUUpRoFU0fAWgWR0CBJhgvUSZjdX2UKGgGaAloD0MINJ4I4nwccUCUhpRSlGgVTUoBaBZHQIEnBuKoAGV1fZQoaAZoCWgPQwi6nui6sEBwQJSGlFKUaBVNJAFoFkdAgSfLronrp3V9lChoBmgJaA9DCDhm2ZOAmXBAlIaUUpRoFU1FAWgWR0CBMUbe/Ho6dX2UKGgGaAloD0MItoE7UKdGbkCUhpRSlGgVTZsBaBZHQIEz+ANG3F11fZQoaAZoCWgPQwj6KCMugIpwQJSGlFKUaBVNQQFoFkdAgTRmrbQC0XV9lChoBmgJaA9DCGsPe6GArHBAlIaUUpRoFU17AWgWR0CBNK1UEPlNdX2UKGgGaAloD0MIMVuyKkJMbkCUhpRSlGgVTTsBaBZHQIE2ORHPNV11fZQoaAZoCWgPQwhgWtQnOaRwQJSGlFKUaBVNKQFoFkdAgTajeTFERnV9lChoBmgJaA9DCCRiSiQRPHFAlIaUUpRoFU2AAWgWR0CBOLiIcinpdX2UKGgGaAloD0MIQQsJGF0GcUCUhpRSlGgVTckBaBZHQIE5G+mFajh1fZQoaAZoCWgPQwgebLHb541tQJSGlFKUaBVNdQFoFkdAgTtA9mpVCHV9lChoBmgJaA9DCMXIkjnWE3JAlIaUUpRoFU1LAWgWR0CBO3+sHSncdX2UKGgGaAloD0MIdjbknxk7bkCUhpRSlGgVTTQBaBZHQIE8aJGe+VV1fZQoaAZoCWgPQwibVDTWfmNuQJSGlFKUaBVNaAFoFkdAgTx1QQ+UyHV9lChoBmgJaA9DCBDs+C8Q0G9AlIaUUpRoFU1aAWgWR0CBPr80k4WDdX2UKGgGaAloD0MIUDqRYCq/cECUhpRSlGgVTU4BaBZHQIE+9rftQbd1fZQoaAZoCWgPQwjOp45VypRwQJSGlFKUaBVNTQFoFkdAgT+0OEug6HV9lChoBmgJaA9DCJgwmpWtmXFAlIaUUpRoFU0RAWgWR0CBQByz5XU6dX2UKGgGaAloD0MIWhDK+zjfYUCUhpRSlGgVTegDaBZHQIFAdjd56dF1fZQoaAZoCWgPQwjx9bUuNaRwQJSGlFKUaBVNMQFoFkdAgUC/Ue+23XV9lChoBmgJaA9DCN/A5EZRlXBAlIaUUpRoFU0/AWgWR0CBQYzdDYywdX2UKGgGaAloD0MIgSBAho68bkCUhpRSlGgVTSMBaBZHQIFCTuKGcnV1fZQoaAZoCWgPQwh6bTZWYmJxQJSGlFKUaBVNbAFoFkdAgUTc0DU3GXV9lChoBmgJaA9DCIPeG0PARXJAlIaUUpRoFU1UAWgWR0CBRsERJ2+xdX2UKGgGaAloD0MI2h1SDNCdcUCUhpRSlGgVTQ4BaBZHQIFHN7Qb+991fZQoaAZoCWgPQwhZorPMonNwQJSGlFKUaBVNSwFoFkdAgUkFrEcbSHV9lChoBmgJaA9DCJQyqaGNY3BAlIaUUpRoFU02AWgWR0CBSRaK1og3dX2UKGgGaAloD0MIsky/RLxtb0CUhpRSlGgVTaEBaBZHQIFJ6XKKYRd1fZQoaAZoCWgPQwgeGavNPxpyQJSGlFKUaBVNbwFoFkdAgUpRsuWa+nV9lChoBmgJaA9DCKVneokx2m9AlIaUUpRoFU1BAWgWR0CBTAnO0LMLdX2UKGgGaAloD0MIFr6+1qXDckCUhpRSlGgVTU0BaBZHQIFM1Qfp2U11fZQoaAZoCWgPQwjX+iKhbSFxQJSGlFKUaBVNGwFoFkdAgU2+WOZLI3V9lChoBmgJaA9DCLSwpx1+b3BAlIaUUpRoFU1TAWgWR0CBTn8wYcebdX2UKGgGaAloD0MIAK5kxwaycECUhpRSlGgVTWEBaBZHQIFPjIq9XcR1fZQoaAZoCWgPQwjXbOUl/71uQJSGlFKUaBVNSgFoFkdAgVDnEuQIU3V9lChoBmgJaA9DCOkrSDPWtnBAlIaUUpRoFU1/AWgWR0CBUT9OymhudX2UKGgGaAloD0MIN/3ZjxTGbkCUhpRSlGgVTTYBaBZHQIFSv82rGR51fZQoaAZoCWgPQwh4mPbN/eNjQJSGlFKUaBVN6ANoFkdAgVNVhLGrCHV9lChoBmgJaA9DCErx8QkZ0XBAlIaUUpRoFU0sAWgWR0CBVAw7DEWJdX2UKGgGaAloD0MIaVGf5E7WcECUhpRSlGgVTeABaBZHQIFUHvDxb0R1fZQoaAZoCWgPQwhm2CjrtwRwQJSGlFKUaBVNHAFoFkdAgVUl9KEnLXV9lChoBmgJaA9DCGIwf4WMd3BAlIaUUpRoFU0qAWgWR0CBVuQCjk+5dX2UKGgGaAloD0MIwO0JEpurcECUhpRSlGgVTWMBaBZHQIFYJrSE12t1fZQoaAZoCWgPQwjjw+xl2/luQJSGlFKUaBVNKgFoFkdAgVi7QkX1rnV9lChoBmgJaA9DCEmAmlo2CHBAlIaUUpRoFU2zAWgWR0CBWf7Q9ic5dX2UKGgGaAloD0MIEY3uIHYGcUCUhpRSlGgVTSUBaBZHQIFaKBGx2St1fZQoaAZoCWgPQwhqozodSDFxQJSGlFKUaBVNUQFoFkdAgVskDZDiO3V9lChoBmgJaA9DCK8LPzifJ3FAlIaUUpRoFU0wAWgWR0CBW0GbCrLhdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVDwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbi9Vc2Vycy9waGlsaXBwYmVyZ21hbm4vLm1pbmlmb3JnZTMvZW52cy9kZWVwLXJsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxuL1VzZXJzL3BoaWxpcHBiZXJnbWFubi8ubWluaWZvcmdlMy9lbnZzL2RlZXAtcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-12.6-arm64-arm-64bit Darwin Kernel Version 21.6.0: Mon Aug 22 20:19:52 PDT 2022; root:xnu-8020.140.49~2/RELEASE_ARM64_T6000", "Python": "3.10.6", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0", "GPU Enabled": "False", "Numpy": "1.23.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4baf0b4430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4baf0b44c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4baf0b4550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4baf0b45e0>", "_build": "<function ActorCriticPolicy._build at 0x7f4baf0b4670>", "forward": "<function ActorCriticPolicy.forward at 0x7f4baf0b4700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4baf0b4790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4baf0b4820>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4baf0b48b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4baf0b4940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4baf0b49d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4baf0b4a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4baf0ae2c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684237837250450120, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGamNDuMCpA/vlK1vO0aA7+3+GY9XSdHPQAAAAAAAAAAZiuUvMP1BrqkVLG2PA7rsXfQFbsjB9A1AACAPwAAgD9aVJO9j553usvU6jp8aLw1eGVku05aCboAAIA/AACAPw3Rq73s0fm50ilUuUFt8bSxdfQ6C8R4OAAAAAAAAIA/80m1vSlMMbrExys4F3gsM6DnDTtW80u3AACAPwAAgD/NIty8rEwxPiIK8r3fbU6+6VKgvXbQoDwAAAAAAAAAAKA/Eb4aHqM/etiivvSBAr80shO+9TfzPAAAAAAAAAAAgFQYPZQk/T2bAUK9xGdqvuHt6Lzjj2q9AAAAAAAAAADzyJe9g+RmvEN4hzzRBm08bgvKPZabQr0AAIA/AACAPwDtH744iJu7hwKzuvKFJrgn5hw9I6XaOQAAgD8AAIA/GhVlPcNBcrqYF3q2GpEtsHtqJbo6lpU1AACAPwAAgD9m8G69Ujnyu+pDarqvDtw8duBMPZZ9tb0AAIA/AACAP9oBK7701om8Cqg4u7srj7l9R/09rQ6AOgAAgD8AAIA/DcCJvfZMX7oCkhA4/eGaM+GKXDsy3CW3AACAPwAAgD9NTRK+UvmJuxqeLLhTiY21AzDWPOO1UjcAAIA/AACAP5oJar3M954/Q+p4vurU+r4uvsq9hQtkvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGTQO+IuXeGMAWyUTegDjAF0lEdAlJ2jN2TxG3V9lChoBkdAaAOkzoEB82gHTegDaAhHQJSgDmJWNm11fZQoaAZHQHEf9LxqfvpoB03xAmgIR0CUotsjFAE/dX2UKGgGR0BynyHTI/7jaAdNGQNoCEdAlKXGvfTCtXV9lChoBkdAbxec7yQPqmgHTawDaAhHQJSmTAaef7J1fZQoaAZHQG+cKSX+l0poB00sAmgIR0CUp10vXbuddX2UKGgGR0Bzj7Abhm5EaAdNMwFoCEdAlKebrPdEcHV9lChoBkdAbwvJJ5E+gWgHTacBaAhHQJSqmAbyYol1fZQoaAZHQGzYjj7yhBZoB03cAWgIR0CUr5nwXqJNdX2UKGgGR0BxKy704BFNaAdNjQFoCEdAlK//zJ6ppHV9lChoBkdAcH4u9OARTWgHTRMCaAhHQJSwALc9GI91fZQoaAZHQGwSQMpgCwNoB02mAWgIR0CUs/jHGS6ldX2UKGgGR0ByYRX1anrIaAdNJQFoCEdAlLRXIEKVp3V9lChoBkdAcDHPGhmGumgHTWwBaAhHQJS0d4JNTLp1fZQoaAZHQHES/2K2rn1oB004AWgIR0CUuJ150KZ2dX2UKGgGR0BvB7SLIgeSaAdNeQFoCEdAlLtxi5NGmXV9lChoBkdAcO/qnm7rcGgHTXIBaAhHQJS9145cTrV1fZQoaAZHQGD7oVuaWopoB03oA2gIR0CUvf5ggHNYdX2UKGgGR0Buz0KVpsXSaAdN5AFoCEdAlL+03sHB13V9lChoBkdAbarMpw0fo2gHTSMDaAhHQJTDbpSrHVB1fZQoaAZHQGXcHhbW3BpoB03oA2gIR0CUxEBRAKOUdX2UKGgGR0Bwcpp/PPcBaAdNUAJoCEdAlMRzbzshPnV9lChoBkdAcJ/1/Ue+22gHS/9oCEdAlMS22b5M13V9lChoBkdAcUW5t3wCsGgHTW0BaAhHQJTE49jgAIZ1fZQoaAZHQG3tZUtI065oB02AAWgIR0CUxfYukDZEdX2UKGgGR0BuLc0P6KtQaAdNZwNoCEdAlNgem3vx6XV9lChoBkdAbTKHcDbJwWgHTRkCaAhHQJTYzGjsUqR1fZQoaAZHQHByXXI2fkFoB00cAmgIR0CU2Ovnr6cidX2UKGgGR0BweIvXbuc+aAdNOQJoCEdAlNyxuGbkO3V9lChoBkdAZGnljmSyMWgHTegDaAhHQJTcvzI3irF1fZQoaAZHQHENhbfP5YZoB029AWgIR0CU3qQdCE6DdX2UKGgGR0BxOHvb48EFaAdNpQFoCEdAlOA16Rhc7nV9lChoBkdAcUM3uNPxhGgHTdoCaAhHQJThFcMVk+Z1fZQoaAZHQG2CHJ1aGHpoB00mAWgIR0CU4TW1twaSdX2UKGgGR0Bzuewt8NQTaAdNUwFoCEdAlOHpC4SYgXV9lChoBkdAcOfje9Ba92gHTUoBaAhHQJTiS+M6zVt1fZQoaAZHQG9EkE1VHWloB00sAWgIR0CU4tLRKHwgdX2UKGgGR0BwpeIRAbADaAdNiAFoCEdAlOWM2BJ7LXV9lChoBkdAbJE2itaIN2gHTTsBaAhHQJTmsMEzO5d1fZQoaAZHQHGqag7HQyBoB02ZAWgIR0CU5suTzND/dX2UKGgGR0Bwz15NXYDlaAdNQQFoCEdAlOgEGRmseXV9lChoBkdAb7TOs1baAWgHTQ4BaAhHQJTqriQ1aW51fZQoaAZHQE+x7xd6cAloB0vraAhHQJTqzK2a2F51fZQoaAZHQHLvG+CbtqpoB019AWgIR0CU6v+ocaOxdX2UKGgGR0BwHSeYlY2baAdNJwFoCEdAlOwNqtYCAHV9lChoBkdAcMgInBtUGWgHTREBaAhHQJTvNByCFsZ1fZQoaAZHQG89LLIPsiVoB01KAWgIR0CU8sfixVyWdX2UKGgGR0ByGf3bmEGraAdNSQFoCEdAlPM/JmuklHV9lChoBkdAbrLALy+YdGgHS/9oCEdAlPNqa1Cw8nV9lChoBkdAcEhU3GXHBGgHTQUBaAhHQJTzl9nbqQl1fZQoaAZHQHEVi+Yc/+toB00nA2gIR0CU9QGp++dtdX2UKGgGR0Byw1cLSeAeaAdNTAFoCEdAlPekPYnOSnV9lChoBkdAblTYHxBmgGgHTUABaAhHQJT5nN3W4Ex1fZQoaAZHQHCXFp9JBgNoB01LAWgIR0CU+e2FWXC1dX2UKGgGR0BlIF6gM+eOaAdN6ANoCEdAlPuQM2FWXHV9lChoBkdAcIAiJfpljGgHTSkBaAhHQJT/6uIRAbB1fZQoaAZHQG9ULa24NI9oB02AAmgIR0CVACp+MIeHdX2UKGgGR0BxZVjc2zfKaAdNwQJoCEdAlQKwVKwpv3V9lChoBkdAcJHcZccENmgHTVcBaAhHQJUCsZk078x1fZQoaAZHQHNQY371qWVoB0vuaAhHQJUCsZOzpot1fZQoaAZHQG6mQ1BMSK5oB00OAmgIR0CVBArrxAjZdX2UKGgGR0BwapTHbRF7aAdNpAFoCEdAlQY8J6Y3N3V9lChoBkdAcCyGz8gp0GgHTTEDaAhHQJUWmh4+r2h1fZQoaAZHQHAl7ZJ04ipoB021AWgIR0CVGK4yoGY8dX2UKGgGR0BwYH7YTTOPaAdN9gFoCEdAlRobm2b5M3V9lChoBkdAbvCq/dqL0mgHTVUCaAhHQJUaHQdCE6F1fZQoaAZHQHD0VNtZV4poB01HAWgIR0CVGvozeoDQdX2UKGgGR0BwTVKCg9NfaAdNHgFoCEdAlR18ByS3b3V9lChoBkdAcAN3/giu+2gHTRADaAhHQJUfVIqbz9V1fZQoaAZHQG8fI11nuiNoB00LAWgIR0CVH3Krq+rVdX2UKGgGR0BteVdcB2fTaAdNFAFoCEdAlR/qN6w+uHV9lChoBkdAcXO06o2n9GgHTU8BaAhHQJUgTYChew91fZQoaAZHQHBbVW4mTkhoB03eAWgIR0CVILPOIInjdX2UKGgGR0BwChAzHjp+aAdNpwNoCEdAlSHgz544ZXV9lChoBkdAcPHUzsQd0mgHTQsCaAhHQJUia1UlzEJ1fZQoaAZHQG2lubqhUR5oB00IAWgIR0CVI7ag2606dX2UKGgGR0Bw/PyAhB7eaAdNHgFoCEdAlSRQA+6iCnV9lChoBkdAcWqbKzRhMWgHTXIBaAhHQJUlwSXdCVt1fZQoaAZHQHMeEMkQf6poB00qAWgIR0CVKaS+QEIPdX2UKGgGR0Bwl7fEXLvDaAdN6QFoCEdAlSobMX7+DXV9lChoBkdAc2OWtU4rBmgHTXMBaAhHQJUqv4QBgeB1fZQoaAZHQHBdoAXEZR9oB00IAWgIR0CVLJvTgEU1dX2UKGgGR0BxyJQm/nGLaAdNzwFoCEdAlTLdWEK3NXV9lChoBkdARfKROk+HJ2gHS9JoCEdAlTMtcGC7LHV9lChoBkdAcZVHAAQxvmgHTYkBaAhHQJUzxmBe5Wl1fZQoaAZHQHB/XuRcNYtoB02RAWgIR0CVNLvw3HaOdX2UKGgGR0BuJ62tuDSPaAdNhAFoCEdAlTX84T9KmXV9lChoBkdAcbiUVzp5eWgHTYgCaAhHQJU4NPi1iON1fZQoaAZHQG9HqJdjXnRoB00yAWgIR0CVOFBj4HopdX2UKGgGR0BxLWQgcLjQaAdNBgFoCEdAlTiEP+XJHXV9lChoBkdAcHuETQE6k2gHTScCaAhHQJU41+lTFVF1fZQoaAZHQG2dpItlI3BoB03CAmgIR0CVOkKZlWfcdX2UKGgGR0BwyYCHRCyAaAdNiwFoCEdAlTpow7DEWXV9lChoBkdAbrQaLn9vTGgHTX0CaAhHQJU7XY287IV1fZQoaAZHQHA7QPmPo3doB02NAmgIR0CVO8+ZPVNIdX2UKGgGR0BqemMMqjJuaAdNNQJoCEdAlT1l5KODJ3V9lChoBkdAcmixG2Cul2gHTQkBaAhHQJU9rJIUahp1fZQoaAZHQG1PDhtLteFoB0vxaAhHQJVAbHlwLmZ1fZQoaAZHQGz8XkPtlZpoB01xAWgIR0CVQPSP2f03dX2UKGgGR0Bw/WJ+DvmYaAdNGQFoCEdAlUHYMKCxvHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 260, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69c28816cec3db7b94008fb32c8f57ee79bb3fefb84e3ba3aecfd2c33c0bed82
3
+ size 146751
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4baf0b4430>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4baf0b44c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4baf0b4550>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4baf0b45e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f4baf0b4670>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f4baf0b4700>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4baf0b4790>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4baf0b4820>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f4baf0b48b0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4baf0b4940>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4baf0b49d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4baf0b4a60>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f4baf0ae2c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1684237837250450120,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGamNDuMCpA/vlK1vO0aA7+3+GY9XSdHPQAAAAAAAAAAZiuUvMP1BrqkVLG2PA7rsXfQFbsjB9A1AACAPwAAgD9aVJO9j553usvU6jp8aLw1eGVku05aCboAAIA/AACAPw3Rq73s0fm50ilUuUFt8bSxdfQ6C8R4OAAAAAAAAIA/80m1vSlMMbrExys4F3gsM6DnDTtW80u3AACAPwAAgD/NIty8rEwxPiIK8r3fbU6+6VKgvXbQoDwAAAAAAAAAAKA/Eb4aHqM/etiivvSBAr80shO+9TfzPAAAAAAAAAAAgFQYPZQk/T2bAUK9xGdqvuHt6Lzjj2q9AAAAAAAAAADzyJe9g+RmvEN4hzzRBm08bgvKPZabQr0AAIA/AACAPwDtH744iJu7hwKzuvKFJrgn5hw9I6XaOQAAgD8AAIA/GhVlPcNBcrqYF3q2GpEtsHtqJbo6lpU1AACAPwAAgD9m8G69Ujnyu+pDarqvDtw8duBMPZZ9tb0AAIA/AACAP9oBK7701om8Cqg4u7srj7l9R/09rQ6AOgAAgD8AAIA/DcCJvfZMX7oCkhA4/eGaM+GKXDsy3CW3AACAPwAAgD9NTRK+UvmJuxqeLLhTiY21AzDWPOO1UjcAAIA/AACAP5oJar3M954/Q+p4vurU+r4uvsq9hQtkvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGTQO+IuXeGMAWyUTegDjAF0lEdAlJ2jN2TxG3V9lChoBkdAaAOkzoEB82gHTegDaAhHQJSgDmJWNm11fZQoaAZHQHEf9LxqfvpoB03xAmgIR0CUotsjFAE/dX2UKGgGR0BynyHTI/7jaAdNGQNoCEdAlKXGvfTCtXV9lChoBkdAbxec7yQPqmgHTawDaAhHQJSmTAaef7J1fZQoaAZHQG+cKSX+l0poB00sAmgIR0CUp10vXbuddX2UKGgGR0Bzj7Abhm5EaAdNMwFoCEdAlKebrPdEcHV9lChoBkdAbwvJJ5E+gWgHTacBaAhHQJSqmAbyYol1fZQoaAZHQGzYjj7yhBZoB03cAWgIR0CUr5nwXqJNdX2UKGgGR0BxKy704BFNaAdNjQFoCEdAlK//zJ6ppHV9lChoBkdAcH4u9OARTWgHTRMCaAhHQJSwALc9GI91fZQoaAZHQGwSQMpgCwNoB02mAWgIR0CUs/jHGS6ldX2UKGgGR0ByYRX1anrIaAdNJQFoCEdAlLRXIEKVp3V9lChoBkdAcDHPGhmGumgHTWwBaAhHQJS0d4JNTLp1fZQoaAZHQHES/2K2rn1oB004AWgIR0CUuJ150KZ2dX2UKGgGR0BvB7SLIgeSaAdNeQFoCEdAlLtxi5NGmXV9lChoBkdAcO/qnm7rcGgHTXIBaAhHQJS9145cTrV1fZQoaAZHQGD7oVuaWopoB03oA2gIR0CUvf5ggHNYdX2UKGgGR0Buz0KVpsXSaAdN5AFoCEdAlL+03sHB13V9lChoBkdAbarMpw0fo2gHTSMDaAhHQJTDbpSrHVB1fZQoaAZHQGXcHhbW3BpoB03oA2gIR0CUxEBRAKOUdX2UKGgGR0Bwcpp/PPcBaAdNUAJoCEdAlMRzbzshPnV9lChoBkdAcJ/1/Ue+22gHS/9oCEdAlMS22b5M13V9lChoBkdAcUW5t3wCsGgHTW0BaAhHQJTE49jgAIZ1fZQoaAZHQG3tZUtI065oB02AAWgIR0CUxfYukDZEdX2UKGgGR0BuLc0P6KtQaAdNZwNoCEdAlNgem3vx6XV9lChoBkdAbTKHcDbJwWgHTRkCaAhHQJTYzGjsUqR1fZQoaAZHQHByXXI2fkFoB00cAmgIR0CU2Ovnr6cidX2UKGgGR0BweIvXbuc+aAdNOQJoCEdAlNyxuGbkO3V9lChoBkdAZGnljmSyMWgHTegDaAhHQJTcvzI3irF1fZQoaAZHQHENhbfP5YZoB029AWgIR0CU3qQdCE6DdX2UKGgGR0BxOHvb48EFaAdNpQFoCEdAlOA16Rhc7nV9lChoBkdAcUM3uNPxhGgHTdoCaAhHQJThFcMVk+Z1fZQoaAZHQG2CHJ1aGHpoB00mAWgIR0CU4TW1twaSdX2UKGgGR0Bzuewt8NQTaAdNUwFoCEdAlOHpC4SYgXV9lChoBkdAcOfje9Ba92gHTUoBaAhHQJTiS+M6zVt1fZQoaAZHQG9EkE1VHWloB00sAWgIR0CU4tLRKHwgdX2UKGgGR0BwpeIRAbADaAdNiAFoCEdAlOWM2BJ7LXV9lChoBkdAbJE2itaIN2gHTTsBaAhHQJTmsMEzO5d1fZQoaAZHQHGqag7HQyBoB02ZAWgIR0CU5suTzND/dX2UKGgGR0Bwz15NXYDlaAdNQQFoCEdAlOgEGRmseXV9lChoBkdAb7TOs1baAWgHTQ4BaAhHQJTqriQ1aW51fZQoaAZHQE+x7xd6cAloB0vraAhHQJTqzK2a2F51fZQoaAZHQHLvG+CbtqpoB019AWgIR0CU6v+ocaOxdX2UKGgGR0BwHSeYlY2baAdNJwFoCEdAlOwNqtYCAHV9lChoBkdAcMgInBtUGWgHTREBaAhHQJTvNByCFsZ1fZQoaAZHQG89LLIPsiVoB01KAWgIR0CU8sfixVyWdX2UKGgGR0ByGf3bmEGraAdNSQFoCEdAlPM/JmuklHV9lChoBkdAbrLALy+YdGgHS/9oCEdAlPNqa1Cw8nV9lChoBkdAcEhU3GXHBGgHTQUBaAhHQJTzl9nbqQl1fZQoaAZHQHEVi+Yc/+toB00nA2gIR0CU9QGp++dtdX2UKGgGR0Byw1cLSeAeaAdNTAFoCEdAlPekPYnOSnV9lChoBkdAblTYHxBmgGgHTUABaAhHQJT5nN3W4Ex1fZQoaAZHQHCXFp9JBgNoB01LAWgIR0CU+e2FWXC1dX2UKGgGR0BlIF6gM+eOaAdN6ANoCEdAlPuQM2FWXHV9lChoBkdAcIAiJfpljGgHTSkBaAhHQJT/6uIRAbB1fZQoaAZHQG9ULa24NI9oB02AAmgIR0CVACp+MIeHdX2UKGgGR0BxZVjc2zfKaAdNwQJoCEdAlQKwVKwpv3V9lChoBkdAcJHcZccENmgHTVcBaAhHQJUCsZk078x1fZQoaAZHQHNQY371qWVoB0vuaAhHQJUCsZOzpot1fZQoaAZHQG6mQ1BMSK5oB00OAmgIR0CVBArrxAjZdX2UKGgGR0BwapTHbRF7aAdNpAFoCEdAlQY8J6Y3N3V9lChoBkdAcCyGz8gp0GgHTTEDaAhHQJUWmh4+r2h1fZQoaAZHQHAl7ZJ04ipoB021AWgIR0CVGK4yoGY8dX2UKGgGR0BwYH7YTTOPaAdN9gFoCEdAlRobm2b5M3V9lChoBkdAbvCq/dqL0mgHTVUCaAhHQJUaHQdCE6F1fZQoaAZHQHD0VNtZV4poB01HAWgIR0CVGvozeoDQdX2UKGgGR0BwTVKCg9NfaAdNHgFoCEdAlR18ByS3b3V9lChoBkdAcAN3/giu+2gHTRADaAhHQJUfVIqbz9V1fZQoaAZHQG8fI11nuiNoB00LAWgIR0CVH3Krq+rVdX2UKGgGR0BteVdcB2fTaAdNFAFoCEdAlR/qN6w+uHV9lChoBkdAcXO06o2n9GgHTU8BaAhHQJUgTYChew91fZQoaAZHQHBbVW4mTkhoB03eAWgIR0CVILPOIInjdX2UKGgGR0BwChAzHjp+aAdNpwNoCEdAlSHgz544ZXV9lChoBkdAcPHUzsQd0mgHTQsCaAhHQJUia1UlzEJ1fZQoaAZHQG2lubqhUR5oB00IAWgIR0CVI7ag2606dX2UKGgGR0Bw/PyAhB7eaAdNHgFoCEdAlSRQA+6iCnV9lChoBkdAcWqbKzRhMWgHTXIBaAhHQJUlwSXdCVt1fZQoaAZHQHMeEMkQf6poB00qAWgIR0CVKaS+QEIPdX2UKGgGR0Bwl7fEXLvDaAdN6QFoCEdAlSobMX7+DXV9lChoBkdAc2OWtU4rBmgHTXMBaAhHQJUqv4QBgeB1fZQoaAZHQHBdoAXEZR9oB00IAWgIR0CVLJvTgEU1dX2UKGgGR0BxyJQm/nGLaAdNzwFoCEdAlTLdWEK3NXV9lChoBkdARfKROk+HJ2gHS9JoCEdAlTMtcGC7LHV9lChoBkdAcZVHAAQxvmgHTYkBaAhHQJUzxmBe5Wl1fZQoaAZHQHB/XuRcNYtoB02RAWgIR0CVNLvw3HaOdX2UKGgGR0BuJ62tuDSPaAdNhAFoCEdAlTX84T9KmXV9lChoBkdAcbiUVzp5eWgHTYgCaAhHQJU4NPi1iON1fZQoaAZHQG9HqJdjXnRoB00yAWgIR0CVOFBj4HopdX2UKGgGR0BxLWQgcLjQaAdNBgFoCEdAlTiEP+XJHXV9lChoBkdAcHuETQE6k2gHTScCaAhHQJU41+lTFVF1fZQoaAZHQG2dpItlI3BoB03CAmgIR0CVOkKZlWfcdX2UKGgGR0BwyYCHRCyAaAdNiwFoCEdAlTpow7DEWXV9lChoBkdAbrQaLn9vTGgHTX0CaAhHQJU7XY287IV1fZQoaAZHQHA7QPmPo3doB02NAmgIR0CVO8+ZPVNIdX2UKGgGR0BqemMMqjJuaAdNNQJoCEdAlT1l5KODJ3V9lChoBkdAcmixG2Cul2gHTQkBaAhHQJU9rJIUahp1fZQoaAZHQG1PDhtLteFoB0vxaAhHQJVAbHlwLmZ1fZQoaAZHQGz8XkPtlZpoB01xAWgIR0CVQPSP2f03dX2UKGgGR0Bw/WJ+DvmYaAdNGQFoCEdAlUHYMKCxvHVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 260,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4639e610c8ce486690f93f9ec66b73dee36ebe53b8dfe4574e2070f85550f1c5
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d185ac380d7cf5f508145c463c7aa2232ed24069e336d365018d719dbfdecf7c
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 247.17205649588013, "std_reward": 24.824496685212594, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-15T09:45:42.655565"}
 
1
+ {"mean_reward": 261.20976232715947, "std_reward": 16.66083312619772, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-16T12:16:06.682084"}