model documentation
#2
by
nazneen
- opened
README.md
CHANGED
@@ -1,15 +1,174 @@
|
|
|
|
1 |
---
|
2 |
-
language:
|
|
|
3 |
datasets:
|
4 |
- squad
|
5 |
metrics:
|
6 |
- squad
|
7 |
-
license: apache-2.0
|
8 |
---
|
9 |
|
10 |
-
# ONNX Conversion of
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
This model is a fine-tune checkpoint of [DistilBERT-base-cased](https://huggingface.co/distilbert-base-cased), fine-tuned using (a second step of) knowledge distillation on SQuAD v1.1.
|
15 |
-
This model reaches a F1 score of 87.1 on the dev set (for comparison, BERT bert-base-cased version reaches a F1 score of 88.7).
|
|
|
1 |
+
|
2 |
---
|
3 |
+
language: en
|
4 |
+
license: apache-2.0
|
5 |
datasets:
|
6 |
- squad
|
7 |
metrics:
|
8 |
- squad
|
|
|
9 |
---
|
10 |
|
11 |
+
# Model Card for ONNX Conversion of distilbert-base-cased-distilled-squad
|
12 |
+
|
13 |
+
# Model Details
|
14 |
+
|
15 |
+
## Model Description
|
16 |
+
This model is a fine-tune checkpoint of DistilBERT-base-cased, fine-tuned using (a second step of) knowledge distillation on SQuAD v1.1.
|
17 |
+
|
18 |
+
- **Developed by:** Philipp Schmid
|
19 |
+
- **Shared by [Optional]:** Hugging Face
|
20 |
+
- **Model type:** Question Answering
|
21 |
+
- **Language(s) (NLP):** en
|
22 |
+
- **License:** Apache-2.0
|
23 |
+
- **Related Models:** [distilbert-base-cased-distilled-squad](https://huggingface.co/distilbert-base-cased-distilled-squad)
|
24 |
+
- **Parent Model:** distilbert
|
25 |
+
- **Resources for more information:**
|
26 |
+
- [Space](https://huggingface.co/spaces/krrishD/philschmid_distilbert-onnx)
|
27 |
+
- [Blog Post](https://www.philschmid.de/convert-transformers-to-onnx)
|
28 |
+
|
29 |
+
# Uses
|
30 |
+
|
31 |
+
|
32 |
+
## Direct Use
|
33 |
+
|
34 |
+
This model can be used for question answering.
|
35 |
+
|
36 |
+
## Downstream Use [Optional]
|
37 |
+
|
38 |
+
|
39 |
+
More information needed.
|
40 |
+
|
41 |
+
|
42 |
+
## Out-of-Scope Use
|
43 |
+
|
44 |
+
|
45 |
+
The model should not be used to intentionally create hostile or alienating environments for people.
|
46 |
+
|
47 |
+
# Bias, Risks, and Limitations
|
48 |
+
|
49 |
+
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
|
50 |
+
|
51 |
+
|
52 |
+
## Recommendations
|
53 |
+
|
54 |
+
|
55 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
56 |
+
|
57 |
+
|
58 |
+
# Training Details
|
59 |
+
|
60 |
+
## Training Data
|
61 |
+
|
62 |
+
To learn more about the SQuAD v1.1 dataset, see the associated [SQuAD v1.1 dataset card](https://huggingface.co/datasets/squad) for further details.
|
63 |
+
|
64 |
+
## Training Procedure
|
65 |
+
|
66 |
+
|
67 |
+
### Preprocessing
|
68 |
+
|
69 |
+
See the [distilbert-base-cased model card](https://huggingface.co/distilbert-base-cased) for further details.
|
70 |
+
|
71 |
+
### Speeds, Sizes, Times
|
72 |
+
|
73 |
+
|
74 |
+
See the [distilbert-base-cased model card](https://huggingface.co/distilbert-base-cased) for further details.
|
75 |
+
|
76 |
+
# Evaluation
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
## Testing Data, Factors & Metrics
|
81 |
+
|
82 |
+
### Testing Data
|
83 |
+
|
84 |
+
|
85 |
+
More information needed
|
86 |
+
|
87 |
+
### Factors
|
88 |
+
|
89 |
+
|
90 |
+
### Metrics
|
91 |
+
|
92 |
+
More information needed
|
93 |
+
|
94 |
+
## Results
|
95 |
+
|
96 |
+
This model reaches a F1 score of 87.1 on the dev set (for comparison, BERT bert-base-cased version reaches a F1 score of 88.7).
|
97 |
+
|
98 |
+
# Model Examination
|
99 |
+
More information needed
|
100 |
+
|
101 |
+
# Environmental Impact
|
102 |
+
|
103 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
104 |
+
|
105 |
+
- **Hardware Type:** More information needed
|
106 |
+
- **Hours used:** More information needed
|
107 |
+
- **Cloud Provider:** More information needed
|
108 |
+
- **Compute Region:** More information needed
|
109 |
+
- **Carbon Emitted:** More information needed
|
110 |
+
|
111 |
+
# Technical Specifications [optional]
|
112 |
+
|
113 |
+
## Model Architecture and Objective
|
114 |
+
|
115 |
+
More information needed
|
116 |
+
|
117 |
+
## Compute Infrastructure
|
118 |
+
|
119 |
+
More information needed
|
120 |
+
|
121 |
+
### Hardware
|
122 |
+
|
123 |
+
More information needed
|
124 |
+
|
125 |
+
### Software
|
126 |
+
|
127 |
+
More information needed
|
128 |
+
|
129 |
+
# Citation
|
130 |
+
|
131 |
+
|
132 |
+
**BibTeX:**
|
133 |
+
|
134 |
+
More information needed
|
135 |
+
|
136 |
+
**APA:**
|
137 |
+
|
138 |
+
More information needed
|
139 |
+
|
140 |
+
# Glossary [optional]
|
141 |
+
|
142 |
+
1. What is ONNX?
|
143 |
+
The ONNX (Open Neural Network eXchange) is an open standard and format to represent machine learning models. ONNX defines a common set of operators and a common file format to represent deep learning models in a wide variety of frameworks, including PyTorch and TensorFlow.
|
144 |
+
|
145 |
+
|
146 |
+
# More Information [optional]
|
147 |
+
|
148 |
+
More information needed
|
149 |
+
|
150 |
+
# Model Card Authors [optional]
|
151 |
+
|
152 |
+
Philipp Schmid in collaboration with Ezi Ozoani and the Hugging Face team.
|
153 |
+
|
154 |
+
# Model Card Contact
|
155 |
+
|
156 |
+
More information needed
|
157 |
+
|
158 |
+
# How to Get Started with the Model
|
159 |
+
|
160 |
+
Use the code below to get started with the model.
|
161 |
+
|
162 |
+
<details>
|
163 |
+
<summary> Click to expand </summary>
|
164 |
|
165 |
+
```python
|
166 |
+
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
|
167 |
+
|
168 |
+
tokenizer = AutoTokenizer.from_pretrained("philschmid/distilbert-onnx")
|
169 |
+
|
170 |
+
model = AutoModelForQuestionAnswering.from_pretrained("philschmid/distilbert-onnx")
|
171 |
+
|
172 |
+
```
|
173 |
+
</details>
|
174 |
|
|
|
|