FLAN-T5-XXL LoRA fine-tuned on samsum

PEFT tuned FLAN-T5 XXL model.

flan-t5-base-samsum

This model is a fine-tuned version of philschmid/flan-t5-xxl-sharded-fp16 on the samsum dataset. It achieves the following results on the evaluation set:

  • rogue1: 50.386161%

  • rouge2: 24.842412%

  • rougeL: 41.370130%

  • rougeLsum: 41.394230%

How to use the model

The model was trained using 🤗 PEFT. This repository only contains the fine-tuned adapter weights for LoRA and the configuration to load the model. Below you can find a snippet on how to run inference using the model. This will load the FLAN-T5-XXL from hugging face if not existing locally.

  1. load the model
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

# Load peft config for pre-trained checkpoint etc. 
peft_model_id = "philschmid/flan-t5-xxl-samsum-peft"
config = PeftConfig.from_pretrained(peft_model_id)

# load base LLM model and tokenizer
model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path,  load_in_8bit=True,  device_map={"":0})
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)

# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id, device_map={"":0})
model.eval()
  1. generate

text = "test"

input_ids = tokenizer(text, return_tensors="pt", truncation=True).input_ids.cuda()
outputs = model.generate(input_ids=input_ids, max_new_tokens=10, do_sample=True, top_p=0.9)
print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0])

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-3
  • train_batch_size: auto
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Framework versions

  • Transformers 4.27.1
  • Pytorch 1.13.1+cu117
  • Datasets 2.9.1
  • PEFT@main
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Dataset used to train philschmid/flan-t5-xxl-samsum-peft

Evaluation results