philschmid's picture
philschmid HF staff
Update README.md
560341e
---
license: apache-2.0
tags:
- generated_from_keras_callback
widget:
- src: https://cdn.prod.www.spiegel.de/images/6b1135cd-0001-0004-0000-000000867699_w996_r1.778_fpx50_fpy47.38.jpg
metrics:
- accuracy
model-index:
- name: philschmid/vit-base-patch16-224-in21k-euroSat
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: eurosat
type: eurosat
args: default
metrics:
- name: accuracy
type: accuracy
value: 0.9906
- name: top-3-accuracy
type: top-3-accuracy
value: 1.0000
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# philschmid/vit-base-patch16-224-in21k-euroSat
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0218
- Train Accuracy: 0.9990
- Train Top-3-accuracy: 1.0000
- Validation Loss: 0.0440
- Validation Accuracy: 0.9906
- Validation Top-3-accuracy: 1.0
- Epoch: 5
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 3585, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16
### Training results
| Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch |
|:----------:|:--------------:|:--------------------:|:---------------:|:-------------------:|:-------------------------:|:-----:|
| 0.4692 | 0.9471 | 0.9878 | 0.1455 | 0.9861 | 0.9998 | 1 |
| 0.0998 | 0.9888 | 0.9996 | 0.0821 | 0.9864 | 0.9995 | 2 |
| 0.0517 | 0.9939 | 0.9999 | 0.0617 | 0.9871 | 1.0 | 3 |
| 0.0309 | 0.9971 | 0.9999 | 0.0524 | 0.9878 | 0.9998 | 4 |
| 0.0218 | 0.9990 | 1.0000 | 0.0440 | 0.9906 | 1.0 | 5 |
### Framework versions
- Transformers 4.15.0
- TensorFlow 2.7.0
- Datasets 1.17.0
- Tokenizers 0.10.3