pierreguillou's picture
Update README.md
7f6880d
|
raw
history blame
16.6 kB
metadata
language:
  - multilingual
  - en
  - de
  - fr
  - ja
license: mit
tags:
  - object-detection
  - vision
  - generated_from_trainer
  - DocLayNet
  - LayoutXLM
  - COCO
  - PDF
  - IBM
  - Financial-Reports
  - Finance
  - Manuals
  - Scientific-Articles
  - Science
  - Laws
  - Law
  - Regulations
  - Patents
  - Government-Tenders
  - object-detection
  - image-segmentation
  - token-classification
inference: false
datasets:
  - pierreguillou/DocLayNet-base
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: >-
      pierreguillou/layout-xlm-base-finetuned-with-DocLayNet-base-at-paragraphlevel-ml512
    results:
      - task:
          name: Token Classification
          type: token-classification
        metrics:
          - name: f1
            type: f1
            value: 0.7739
          - name: accuracy
            type: accuracy
            value: 0.8655

Document Understanding model (finetuned LayoutXLM base at paragraph level on DocLayNet base)

This model is a fine-tuned version of microsoft/layoutxlm-base with the DocLayNet base dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1796
  • Precision: 0.8062
  • Recall: 0.7441
  • F1: 0.7739
  • Token Accuracy: 0.9693
  • Paragraph Accuracy: 0.87

Accuracy at paragraph level

  • Paragraph Accuracy: 86.55%
  • Accuracy by label
    • Caption: 63.76%
    • Footnote: 31.91%
    • Formula: 95.33%
    • List-item: 79.31%
    • Page-footer: 99.51%
    • Page-header: 88.75%
    • Picture: 90.91%
    • Section-header: 83.16%
    • Table: 68.25%
    • Text: 91.37%
    • Title: 50.0%

Paragraphs labels vs accuracy (%) of the dataset DocLayNet base of test (model: LayoutXLM base finetuned on DocLayNet base))

Confusion matrix of the labeled blocks of the dataset DocLayNet base of test (model: LayoutXLM base finetuned on DocLayNet base)

References

Other models

Blog posts

Notebooks (paragraph level)

Notebooks (line level)

APP

You can test this model with this APP in Hugging Face Spaces: Inference APP for Document Understanding at paragraph level (v2).

Inference APP for Document Understanding at paragraph level (v2)

You can run as well the corresponding notebook: Document AI | Inference APP at paragraph level with a Document Understanding model (LayoutXLM base fine-tuned on DocLayNet dataset)

DocLayNet dataset

DocLayNet dataset (IBM) provides page-by-page layout segmentation ground-truth using bounding-boxes for 11 distinct class labels on 80863 unique pages from 6 document categories.

Until today, the dataset can be downloaded through direct links or as a dataset from Hugging Face datasets:

Paper: DocLayNet: A Large Human-Annotated Dataset for Document-Layout Analysis (06/02/2022)

Model description

The model was finetuned at paragraph level on chunk of 512 tokens with overlap of 128 tokens. Thus, the model was trained with all layout and text data of all pages of the dataset.

At inference time, a calculation of best probabilities give the label to each paragraph bounding boxes.

Inference

See notebook: Document AI | Inference at paragraph level with a Document Understanding model (LayoutXLM base fine-tuned on DocLayNet dataset)

Training and evaluation data

See notebook: Document AI | Fine-tune LayoutXLM base on DocLayNet base in any language at paragraph level (chunk of 512 tokens with overlap)

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy F1 Validation Loss Precision Recall
No log 0.11 200 0.8842 0.1066 0.4428 0.1154 0.0991
No log 0.21 400 0.9243 0.4440 0.3040 0.4548 0.4336
0.7241 0.32 600 0.9359 0.5544 0.2265 0.5330 0.5775
0.7241 0.43 800 0.9479 0.6015 0.2140 0.6013 0.6017
0.2343 0.53 1000 0.9402 0.6132 0.2852 0.6642 0.5695
0.2343 0.64 1200 0.9540 0.6604 0.1694 0.6565 0.6644
0.2343 0.75 1400 0.9354 0.6198 0.2308 0.5119 0.7854
0.1913 0.85 1600 0.9594 0.6590 0.1601 0.7190 0.6082
0.1913 0.96 1800 0.9541 0.6597 0.1671 0.5790 0.7664
0.1346 1.07 2000 0.9612 0.6986 0.1580 0.6838 0.7140
0.1346 1.17 2200 0.9597 0.6897 0.1423 0.6618 0.7200
0.1346 1.28 2400 0.9663 0.6980 0.1580 0.7490 0.6535
0.098 1.39 2600 0.9616 0.6800 0.1394 0.7044 0.6573
0.098 1.49 2800 0.9686 0.7251 0.1756 0.6893 0.7649
0.0999 1.6 3000 0.9636 0.6985 0.1542 0.7127 0.6848
0.0999 1.71 3200 0.9670 0.7097 0.1187 0.7538 0.6705
0.0999 1.81 3400 0.9585 0.7427 0.1793 0.7602 0.7260
0.0972 1.92 3600 0.9621 0.7189 0.1836 0.7576 0.6839
0.0972 2.03 3800 0.9642 0.7189 0.1465 0.7388 0.6999
0.0662 2.13 4000 0.9691 0.7450 0.1409 0.7615 0.7292
0.0662 2.24 4200 0.9615 0.7432 0.1720 0.7435 0.7429
0.0662 2.35 4400 0.9667 0.7338 0.1440 0.7469 0.7212
0.0581 2.45 4600 0.9657 0.7135 0.1928 0.7458 0.6839
0.0581 2.56 4800 0.9692 0.7378 0.1645 0.7467 0.7292
0.0538 2.67 5000 0.9656 0.7619 0.1517 0.7700 0.7541
0.0538 2.77 5200 0.9684 0.7728 0.1676 0.8227 0.7286
0.0538 2.88 5400 0.9725 0.7608 0.1277 0.7865 0.7367
0.0432 2.99 5600 0.9693 0.7784 0.1532 0.7891 0.7681
0.0432 3.09 5800 0.9692 0.7783 0.1701 0.8067 0.7519
0.0272 3.2 6000 0.9732 0.7798 0.1159 0.8072 0.7542
0.0272 3.3 6200 0.9720 0.7797 0.1835 0.7926 0.7672
0.0272 3.41 6400 0.9730 0.7894 0.1481 0.8183 0.7624
0.0274 3.52 6600 0.9686 0.7655 0.1552 0.7958 0.7373
0.0274 3.62 6800 0.9698 0.7724 0.1523 0.8068 0.7407
0.0246 3.73 7000 0.9691 0.7720 0.1673 0.7960 0.7493
0.0246 3.84 7200 0.9688 0.7695 0.1333 0.7986 0.7424
0.0246 3.94 7400 0.1796 0.8062 0.7441 0.7739 0.9693

Framework versions

  • Transformers 4.27.3
  • Pytorch 1.10.0+cu111
  • Datasets 2.10.1
  • Tokenizers 0.13.2

Other models