SentenceTransformer based on pierreinalco/distilbert-base-uncased-sts
This is a sentence-transformers model finetuned from pierreinalco/distilbert-base-uncased-sts. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: pierreinalco/distilbert-base-uncased-sts
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Fossil fuel reserves are finite and will eventually be depleted.',
'Trace fossils, like footprints and burrows, reveal the behavior of ancient organisms.',
'Electric trains are more environmentally friendly compared to diesel-powered ones.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
custom-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.92 |
spearman_cosine | 0.8477 |
pearson_manhattan | 0.9223 |
spearman_manhattan | 0.8456 |
pearson_euclidean | 0.9226 |
spearman_euclidean | 0.8456 |
pearson_dot | 0.9113 |
spearman_dot | 0.8382 |
pearson_max | 0.9226 |
spearman_max | 0.8477 |
Semantic Similarity
- Dataset:
custom-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9125 |
spearman_cosine | 0.8454 |
pearson_manhattan | 0.9161 |
spearman_manhattan | 0.8454 |
pearson_euclidean | 0.9165 |
spearman_euclidean | 0.8457 |
pearson_dot | 0.903 |
spearman_dot | 0.8319 |
pearson_max | 0.9165 |
spearman_max | 0.8457 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 19,352 training samples
- Columns:
s1
,s2
, andlabel
- Approximate statistics based on the first 1000 samples:
s1 s2 label type string string int details - min: 10 tokens
- mean: 19.85 tokens
- max: 38 tokens
- min: 11 tokens
- mean: 20.47 tokens
- max: 34 tokens
- 0: ~51.40%
- 1: ~48.60%
- Samples:
s1 s2 label Resources and funding are essential for the successful rollout of any new curriculum.
For any new curriculum to be successfully rolled out, it is essential to have resources and funding.
1
Upgrading to LED lighting is a simple step toward improving energy efficiency in buildings.
Upgrading to new software is a simple step toward improving technology adoption in companies.
0
Ethnicity and language often intersect in interesting and complex ways.
Ethnicity and culture often diverge in unexpected and straightforward ways.
0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
Unnamed Dataset
- Size: 2,419 evaluation samples
- Columns:
s1
,s2
, andlabel
- Approximate statistics based on the first 1000 samples:
s1 s2 label type string string int details - min: 10 tokens
- mean: 19.91 tokens
- max: 39 tokens
- min: 11 tokens
- mean: 20.41 tokens
- max: 38 tokens
- 0: ~52.90%
- 1: ~47.10%
- Samples:
s1 s2 label [SYNTAX] Consuming too much processed sugar can lead to insulin resistance and diabetes.
[SYNTAX] Drinking too much water can help maintain proper hydration and overall health.
1
Neutral tones and minimalist designs are staples of gender-neutral fashion.
Colorful patterns and intricate designs are staples of traditional ceremonial attire.
0
[SYNTAX] Policies focusing on sustainable agriculture practices are essential for ensuring food security in the face of climate change.
[SYNTAX] Ensuring food security amidst climate change requires critical policies that emphasize sustainable agricultural practices.
0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 10warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | custom-dev_spearman_cosine | custom-test_spearman_cosine |
---|---|---|---|---|---|
0.3300 | 100 | 0.2137 | 0.0971 | 0.8252 | - |
0.6601 | 200 | 0.0722 | 0.0516 | 0.8445 | - |
0.9901 | 300 | 0.0503 | 0.0440 | 0.8480 | - |
1.3201 | 400 | 0.0353 | 0.0417 | 0.8479 | - |
1.6502 | 500 | 0.032 | 0.0388 | 0.8500 | - |
1.9802 | 600 | 0.0312 | 0.0375 | 0.8484 | - |
2.3102 | 700 | 0.0175 | 0.0380 | 0.8494 | - |
2.6403 | 800 | 0.016 | 0.0368 | 0.8486 | - |
2.9703 | 900 | 0.0158 | 0.0367 | 0.8486 | - |
3.3003 | 1000 | 0.0087 | 0.0394 | 0.8463 | - |
3.6304 | 1100 | 0.0086 | 0.0371 | 0.8463 | - |
3.9604 | 1200 | 0.0098 | 0.0368 | 0.8475 | - |
4.2904 | 1300 | 0.0055 | 0.0384 | 0.8496 | - |
4.6205 | 1400 | 0.0057 | 0.0379 | 0.8466 | - |
4.9505 | 1500 | 0.0057 | 0.0389 | 0.8473 | - |
5.2805 | 1600 | 0.0037 | 0.0391 | 0.8482 | - |
5.6106 | 1700 | 0.0042 | 0.0379 | 0.8477 | - |
5.9406 | 1800 | 0.0039 | 0.0380 | 0.8479 | - |
6.2706 | 1900 | 0.0026 | 0.0390 | 0.8477 | - |
6.6007 | 2000 | 0.0028 | 0.0390 | 0.8475 | - |
6.9307 | 2100 | 0.0031 | 0.0385 | 0.8473 | - |
7.2607 | 2200 | 0.0022 | 0.0393 | 0.8473 | - |
7.5908 | 2300 | 0.0021 | 0.0391 | 0.8470 | - |
7.9208 | 2400 | 0.002 | 0.0387 | 0.8482 | - |
8.2508 | 2500 | 0.0013 | 0.0389 | 0.8482 | - |
8.5809 | 2600 | 0.0014 | 0.0392 | 0.8484 | - |
8.9109 | 2700 | 0.0018 | 0.0390 | 0.8479 | - |
9.2409 | 2800 | 0.0015 | 0.0393 | 0.8480 | - |
9.5710 | 2900 | 0.0012 | 0.0393 | 0.8479 | - |
9.9010 | 3000 | 0.0013 | 0.0394 | 0.8477 | - |
10.0 | 3030 | - | - | - | 0.8454 |
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 14
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for pierreinalco/custom-v2
Base model
distilbert/distilbert-base-uncased
Finetuned
pierreinalco/distilbert-base-uncased-sts
Evaluation results
- Pearson Cosine on custom devself-reported0.920
- Spearman Cosine on custom devself-reported0.848
- Pearson Manhattan on custom devself-reported0.922
- Spearman Manhattan on custom devself-reported0.846
- Pearson Euclidean on custom devself-reported0.923
- Spearman Euclidean on custom devself-reported0.846
- Pearson Dot on custom devself-reported0.911
- Spearman Dot on custom devself-reported0.838
- Pearson Max on custom devself-reported0.923
- Spearman Max on custom devself-reported0.848