|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- sentiment140 |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: Sentiment140_DistilBERT_5E |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: sentiment140 |
|
type: sentiment140 |
|
config: sentiment140 |
|
split: train |
|
args: sentiment140 |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8333333333333334 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Sentiment140_DistilBERT_5E |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the sentiment140 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4897 |
|
- Accuracy: 0.8333 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.6784 | 0.08 | 50 | 0.6516 | 0.6933 | |
|
| 0.6301 | 0.16 | 100 | 0.5384 | 0.7533 | |
|
| 0.5438 | 0.24 | 150 | 0.4559 | 0.8 | |
|
| 0.4625 | 0.32 | 200 | 0.4287 | 0.8133 | |
|
| 0.4528 | 0.4 | 250 | 0.4056 | 0.8267 | |
|
| 0.4609 | 0.48 | 300 | 0.3883 | 0.8333 | |
|
| 0.4705 | 0.56 | 350 | 0.3886 | 0.8067 | |
|
| 0.4539 | 0.64 | 400 | 0.3967 | 0.82 | |
|
| 0.4483 | 0.72 | 450 | 0.3758 | 0.82 | |
|
| 0.4699 | 0.8 | 500 | 0.4003 | 0.8133 | |
|
| 0.467 | 0.88 | 550 | 0.4021 | 0.8267 | |
|
| 0.454 | 0.96 | 600 | 0.3735 | 0.8333 | |
|
| 0.4227 | 1.04 | 650 | 0.3840 | 0.8267 | |
|
| 0.3584 | 1.12 | 700 | 0.3775 | 0.8333 | |
|
| 0.3618 | 1.2 | 750 | 0.4026 | 0.8267 | |
|
| 0.3634 | 1.28 | 800 | 0.3891 | 0.8133 | |
|
| 0.3751 | 1.36 | 850 | 0.3895 | 0.8267 | |
|
| 0.3484 | 1.44 | 900 | 0.3919 | 0.8267 | |
|
| 0.3764 | 1.52 | 950 | 0.3770 | 0.84 | |
|
| 0.3488 | 1.6 | 1000 | 0.4028 | 0.82 | |
|
| 0.3665 | 1.68 | 1050 | 0.3779 | 0.8333 | |
|
| 0.3925 | 1.76 | 1100 | 0.3726 | 0.84 | |
|
| 0.3624 | 1.84 | 1150 | 0.3655 | 0.84 | |
|
| 0.3876 | 1.92 | 1200 | 0.3648 | 0.8133 | |
|
| 0.3935 | 2.0 | 1250 | 0.3633 | 0.8467 | |
|
| 0.2944 | 2.08 | 1300 | 0.3808 | 0.8333 | |
|
| 0.2957 | 2.16 | 1350 | 0.3836 | 0.8333 | |
|
| 0.266 | 2.24 | 1400 | 0.3940 | 0.8267 | |
|
| 0.2747 | 2.32 | 1450 | 0.3952 | 0.84 | |
|
| 0.314 | 2.4 | 1500 | 0.4060 | 0.8133 | |
|
| 0.3419 | 2.48 | 1550 | 0.4025 | 0.8133 | |
|
| 0.2782 | 2.56 | 1600 | 0.4218 | 0.82 | |
|
| 0.3218 | 2.64 | 1650 | 0.4039 | 0.8333 | |
|
| 0.2863 | 2.72 | 1700 | 0.4130 | 0.8267 | |
|
| 0.3336 | 2.8 | 1750 | 0.4026 | 0.8133 | |
|
| 0.3224 | 2.88 | 1800 | 0.3910 | 0.8267 | |
|
| 0.2709 | 2.96 | 1850 | 0.3979 | 0.84 | |
|
| 0.2701 | 3.04 | 1900 | 0.4127 | 0.8333 | |
|
| 0.2782 | 3.12 | 1950 | 0.4335 | 0.82 | |
|
| 0.2425 | 3.2 | 2000 | 0.4229 | 0.8333 | |
|
| 0.2457 | 3.28 | 2050 | 0.4168 | 0.8333 | |
|
| 0.217 | 3.36 | 2100 | 0.4264 | 0.8267 | |
|
| 0.2522 | 3.44 | 2150 | 0.4250 | 0.8333 | |
|
| 0.2402 | 3.52 | 2200 | 0.4371 | 0.8333 | |
|
| 0.2465 | 3.6 | 2250 | 0.4429 | 0.8333 | |
|
| 0.2427 | 3.68 | 2300 | 0.4435 | 0.8333 | |
|
| 0.2408 | 3.76 | 2350 | 0.4500 | 0.84 | |
|
| 0.1976 | 3.84 | 2400 | 0.4536 | 0.8333 | |
|
| 0.23 | 3.92 | 2450 | 0.4645 | 0.8333 | |
|
| 0.2449 | 4.0 | 2500 | 0.4557 | 0.8467 | |
|
| 0.1933 | 4.08 | 2550 | 0.4672 | 0.84 | |
|
| 0.213 | 4.16 | 2600 | 0.4717 | 0.84 | |
|
| 0.1772 | 4.24 | 2650 | 0.4843 | 0.8267 | |
|
| 0.1917 | 4.32 | 2700 | 0.4690 | 0.8467 | |
|
| 0.2094 | 4.4 | 2750 | 0.4728 | 0.8467 | |
|
| 0.1903 | 4.48 | 2800 | 0.4755 | 0.8467 | |
|
| 0.2541 | 4.56 | 2850 | 0.4791 | 0.84 | |
|
| 0.1805 | 4.64 | 2900 | 0.4877 | 0.84 | |
|
| 0.2183 | 4.72 | 2950 | 0.4940 | 0.8267 | |
|
| 0.2257 | 4.8 | 3000 | 0.4905 | 0.8333 | |
|
| 0.2496 | 4.88 | 3050 | 0.4883 | 0.84 | |
|
| 0.1846 | 4.96 | 3100 | 0.4897 | 0.8333 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.24.0 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.6.1 |
|
- Tokenizers 0.13.1 |
|
|