Edit model card

rtm_DistilBERT_5E

This model is a fine-tuned version of distilbert-base-cased on the rotten_tomatoes dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6835
  • Accuracy: 0.82

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6822 0.09 50 0.6391 0.76
0.5531 0.19 100 0.4684 0.7667
0.4546 0.28 150 0.4479 0.7733
0.4495 0.37 200 0.3953 0.8067
0.4239 0.47 250 0.4211 0.7933
0.3951 0.56 300 0.4126 0.7933
0.3861 0.66 350 0.3950 0.7933
0.4108 0.75 400 0.4091 0.82
0.3778 0.84 450 0.4107 0.7933
0.3627 0.94 500 0.4203 0.7933
0.3648 1.03 550 0.4190 0.8
0.2899 1.12 600 0.4436 0.8
0.2637 1.22 650 0.4504 0.82
0.2885 1.31 700 0.4406 0.82
0.3226 1.4 750 0.4398 0.8333
0.3147 1.5 800 0.4239 0.82
0.2937 1.59 850 0.4227 0.8133
0.3149 1.69 900 0.3791 0.82
0.3227 1.78 950 0.3888 0.8133
0.2727 1.87 1000 0.4215 0.82
0.2722 1.97 1050 0.4099 0.8333
0.1908 2.06 1100 0.4595 0.82
0.2276 2.15 1150 0.4572 0.84
0.2239 2.25 1200 0.4545 0.8333
0.1986 2.34 1250 0.4895 0.82
0.2388 2.43 1300 0.4352 0.86
0.1901 2.53 1350 0.4806 0.84
0.2227 2.62 1400 0.5473 0.8067
0.2221 2.72 1450 0.5010 0.84
0.1955 2.81 1500 0.5315 0.8267
0.2114 2.9 1550 0.5410 0.8133
0.1827 3.0 1600 0.5721 0.8133
0.1527 3.09 1650 0.5616 0.8133
0.1464 3.18 1700 0.5935 0.8067
0.135 3.28 1750 0.6145 0.82
0.1668 3.37 1800 0.6901 0.8067
0.1702 3.46 1850 0.6067 0.8133
0.1738 3.56 1900 0.5981 0.82
0.1506 3.65 1950 0.6073 0.8267
0.1584 3.75 2000 0.6549 0.8133
0.1698 3.84 2050 0.6660 0.8267
0.1626 3.93 2100 0.6645 0.8267
0.1483 4.03 2150 0.6497 0.82
0.1342 4.12 2200 0.6643 0.82
0.1064 4.21 2250 0.6775 0.82
0.1302 4.31 2300 0.6876 0.82
0.1847 4.4 2350 0.6821 0.8133
0.1055 4.49 2400 0.6928 0.8133
0.1372 4.59 2450 0.6877 0.8133
0.131 4.68 2500 0.6769 0.8267
0.1242 4.78 2550 0.6769 0.8267
0.1289 4.87 2600 0.6810 0.82
0.1488 4.96 2650 0.6835 0.82

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.13.0
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
67
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train pig4431/rtm_DistilBERT_5E

Evaluation results