File size: 1,048 Bytes
8e78d2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
from typing import Dict, List, Any
import numpy as np
from transformers import CLIPTokenizer, CLIPModel


class PreTrainedPipeline():
    def __init__(self, path=""):
        # Preload all the elements you are going to need at inference.
        # For instance your model, processors, tokenizer that might be needed.
        # This function is only called once, so do all the heavy processing I/O here"""
        self.model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
        self.tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")

    def __call__(self, inputs: str) -> List[float]:
        """
        Args:
            inputs (:obj:`str`):
                a string to get the features from.
        Return:
            A :obj:`list` of floats: The features computed by the model.
        """
        token_inputs = self.tokenizer([inputs],  padding=True, return_tensors="pt")
        query_embed = self.model.get_text_features(**token_inputs)
        return query_embed.detach().cpu().numpy()[0].tolist()