Edit model card

crossencoder-airline-refine-030

This model is a fine-tuned version of cross-encoder/stsb-roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0451

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.312 1.0 159 0.3001
0.197 2.0 318 0.3300
0.2195 3.0 477 0.1976
0.5386 4.0 636 0.1339
0.1417 5.0 795 0.1625
0.2544 6.0 954 0.5143
0.0716 7.0 1113 0.1888
0.1214 8.0 1272 0.1115
0.1658 9.0 1431 0.1007
0.1489 10.0 1590 0.1735
0.1163 11.0 1749 0.0781
0.1411 12.0 1908 0.1386
0.1636 13.0 2067 0.1462
0.1122 14.0 2226 0.2000
0.1287 15.0 2385 0.1702
0.1954 16.0 2544 0.1191
0.0632 17.0 2703 0.1155
0.0377 18.0 2862 0.0979
0.0714 19.0 3021 0.0810
0.0727 20.0 3180 0.0710
0.0449 21.0 3339 0.0832
0.0964 22.0 3498 0.0721
0.0276 23.0 3657 0.0516
0.0269 24.0 3816 0.0601
0.0483 25.0 3975 0.0583
0.0442 26.0 4134 0.0627
0.0181 27.0 4293 0.0704
0.0177 28.0 4452 0.0631
0.0315 29.0 4611 0.0614
0.0184 30.0 4770 0.0623

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.0.1
  • Datasets 2.17.1
  • Tokenizers 0.15.2
Downloads last month
7
Safetensors
Model size
355M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for pjbhaumik/crossencoder-airline-refine-030

Finetuned
(4)
this model