metadata
library_name: transformers
datasets:
- pksx01/alpaca_bhojpuri_instruction
language:
- bh
base_model:
- sarvamai/sarvam-1
This model has been instruction tuned from sarvamai/sarvam-1. This is an early checkpoint trained for few hours. Checkpoints with complete training will be released soon.
Uses
This model can be used to chat in Bhojpuri language.
How to Get Started with the Model
Use the code below to get started with the model.
import torch
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained("pksx01/sarvam-1-it-bhojpuri")
# Load base model
model = AutoModelForCausalLM.from_pretrained(
"sarvamai/sarvam-1",
torch_dtype=torch.bfloat16,
device_map="auto"
)
model.resize_token_embeddings(len(tokenizer))
# Load the PEFT model
peft_model = PeftModel.from_pretrained(
model,
"pksx01/sarvam-1-it-bhojpuri",
is_trainable=False
)
message = [{"role": "user", "content": "भारत के पहिला प्रधानमंत्री के रहे?"}]
model_ip = tokenizer.apply_chat_template(message, tokenize=False)
tokenized_ip = tokenizer(model_ip, return_tensors="pt").to("cuda")
peft_model.eval()
with torch.no_grad():
op_tokens = peft_model.generate(
**tokenized_ip,
max_new_tokens=250,
temperature=0.01,
top_k=50,
top_p=0.95,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id
)
op = tokenizer.decode(op_tokens[0], skip_special_tokens=True)
print(op)
Training Details
Training Data
This model has be trained on an instruction dataset - pksx01/alpaca_bhojpuri_instruction.