pnr-svc's picture
End of training
44f9d7e verified
metadata
language:
  - tr
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper base tr - Pinar Savci
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: tr
          split: None
          args: 'config: tr, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 32.92193048844385

Whisper base tr - Pinar Savci

This model is a fine-tuned version of openai/whisper-base on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4000
  • Wer: 32.9219

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2839 0.8857 1000 0.4282 35.2545
0.1938 1.7715 2000 0.4027 33.2945
0.1292 2.6572 3000 0.4003 32.9976
0.1088 3.5430 4000 0.4000 32.9219

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1