fastAbs-large Finetuned on vietnews Abstractive Summarization

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
​
tokenizer = AutoTokenizer.from_pretrained("polieste/fastAbs_large")  
model = AutoModelForSeq2SeqLM.from_pretrained("polieste/fastAbs_large")
model.cuda()
​
sentence = "Input text"
text =  "vietnews: " + sentence + " </s>"
encoding = tokenizer(text, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda")
outputs = model.generate(
    input_ids=input_ids, attention_mask=attention_masks,
    max_length=512,
    early_stopping=True
)
for output in outputs:
    line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
    print(line)
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train polieste/fastAbs_large