poltextlab's picture
Update metadata with huggingface_hub
2fc1b3f verified
---
license: mit
language:
- multilingual
tags:
- zero-shot-classification
- text-classification
- pytorch
metrics:
- accuracy
- f1-score
extra_gated_prompt: 'Please provide some basic information that confirms the scholarly
use of our models.
If you use our models for your work or research, please cite this paper: Sebők,
M., Máté, Á., Ring, O., Kovács, V., & Lehoczki, R. (2024). Leveraging Open Large
Language Models for Multilingual Policy Topic Classification: The Babel Machine
Approach. Social Science Computer Review, 0(0). https://doi.org/10.1177/08944393241259434'
extra_gated_fields:
Name: text
Country: country
Institution: text
E-mail: text
---
# xlm-roberta-large-parlspeech-cap-v3
## Model description
An `xlm-roberta-large` model finetuned on multilingual training data containing texts of the `parlspeech` domain labelled with [major topic codes](https://www.comparativeagendas.net/pages/master-codebook) from the [Comparative Agendas Project](https://www.comparativeagendas.net/).
## How to use the model
#### Loading and tokenizing input data
```python
import pandas as pd
import numpy as np
from datasets import Dataset
from transformers import (AutoModelForSequenceClassification, AutoTokenizer,
Trainer, TrainingArguments)
CAP_NUM_DICT = {0: '1', 1: '2', 2: '3', 3: '4', 4: '5', 5: '6',
6: '7', 7: '8', 8: '9', 9: '10', 10: '12', 11: '13', 12: '14',
13: '15', 14: '16', 15: '17', 16: '18', 17: '19', 18: '20', 19:
'21', 20: '23', 21: '999'}
tokenizer = AutoTokenizer.from_pretrained('xlm-roberta-large')
num_labels = len(CAP_NUM_DICT)
def tokenize_dataset(data : pd.DataFrame):
tokenized = tokenizer(data["text"],
max_length=MAXLEN,
truncation=True,
padding="max_length")
return tokenized
hg_data = Dataset.from_pandas(data)
dataset = hg_data.map(tokenize_dataset, batched=True, remove_columns=hg_data.column_names)
```
#### Inference using the Trainer class
```python
model = AutoModelForSequenceClassification.from_pretrained('poltextlab/xlm-roberta-large-parlspeech-cap-v3',
num_labels=22,
problem_type="multi_label_classification",
ignore_mismatched_sizes=True
)
training_args = TrainingArguments(
output_dir='.',
per_device_train_batch_size=8,
per_device_eval_batch_size=8
)
trainer = Trainer(
model=model,
args=training_args
)
probs = trainer.predict(test_dataset=dataset).predictions
predicted = pd.DataFrame(np.argmax(probs, axis=1)).replace({0: CAP_NUM_DICT}).rename(
columns={0: 'predicted'}).reset_index(drop=True)
```
### Fine-tuning procedure
`xlm-roberta-large-parlspeech-cap-v3` was fine-tuned using the Hugging Face Trainer class with the following hyperparameters:
```python
training_args = TrainingArguments(
output_dir=f"../model/{model_dir}/tmp/",
logging_dir=f"../logs/{model_dir}/",
logging_strategy='epoch',
num_train_epochs=10,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
learning_rate=5e-06,
seed=42,
save_strategy='epoch',
evaluation_strategy='epoch',
save_total_limit=1,
load_best_model_at_end=True
)
```
We also incorporated an EarlyStoppingCallback in the process with a patience of 2 epochs.
## Model performance
The model was evaluated on a test set of 185409 examples (10% of the available data).<br>
Model accuracy is **0.81**.
| label | precision | recall | f1-score | support |
|:-------------|------------:|---------:|-----------:|----------:|
| 0 | 0.71 | 0.77 | 0.74 | 12681 |
| 1 | 0.69 | 0.6 | 0.64 | 4546 |
| 2 | 0.82 | 0.84 | 0.83 | 7290 |
| 3 | 0.8 | 0.69 | 0.74 | 5344 |
| 4 | 0.69 | 0.69 | 0.69 | 6194 |
| 5 | 0.79 | 0.88 | 0.83 | 6294 |
| 6 | 0.81 | 0.71 | 0.76 | 4244 |
| 7 | 0.72 | 0.81 | 0.76 | 2972 |
| 8 | 0.69 | 0.82 | 0.75 | 4087 |
| 9 | 0.75 | 0.77 | 0.76 | 7177 |
| 10 | 0.79 | 0.7 | 0.74 | 8152 |
| 11 | 0.75 | 0.72 | 0.74 | 5312 |
| 12 | 0.68 | 0.72 | 0.7 | 4001 |
| 13 | 0.69 | 0.65 | 0.67 | 5621 |
| 14 | 0.83 | 0.75 | 0.79 | 4102 |
| 15 | 0.82 | 0.64 | 0.72 | 3285 |
| 16 | 0.7 | 0.3 | 0.42 | 1811 |
| 17 | 0.72 | 0.75 | 0.73 | 8682 |
| 18 | 0.65 | 0.76 | 0.7 | 15644 |
| 19 | 0.58 | 0.54 | 0.56 | 3658 |
| 20 | 0.75 | 0.67 | 0.71 | 1503 |
| 21 | 0.97 | 0.96 | 0.96 | 62809 |
| macro avg | 0.75 | 0.72 | 0.72 | 185409 |
| weighted avg | 0.81 | 0.81 | 0.81 | 185409 |
## Inference platform
This model is used by the [CAP Babel Machine](https://babel.poltextlab.com), an open-source and free natural language processing tool, designed to simplify and speed up projects for comparative research.
## Cooperation
Model performance can be significantly improved by extending our training sets. We appreciate every submission of CAP-coded corpora (of any domain and language) at poltextlab{at}poltextlab{dot}com or by using the [CAP Babel Machine](https://babel.poltextlab.com).
## Debugging and issues
This architecture uses the `sentencepiece` tokenizer. In order to run the model before `transformers==4.27` you need to install it manually.
If you encounter a `RuntimeError` when loading the model using the `from_pretrained()` method, adding `ignore_mismatched_sizes=True` should solve the issue.