pother's picture
End of training
dde3520 verified
metadata
library_name: transformers
language:
  - th
license: apache-2.0
base_model: biodatlab/whisper-th-small-combined
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper Small Th Combined Finetuned
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: th
          split: test
          args: 'config: th, split: validated'
        metrics:
          - name: Wer
            type: wer
            value: 0.41320489664860527

Whisper Small Th Combined Finetuned

This model is a fine-tuned version of biodatlab/whisper-th-small-combined on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0702
  • Wer: 0.4132

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3362 0.2175 1000 0.1439 0.6061
0.2993 0.4349 2000 0.1230 0.5645
0.2523 0.6524 3000 0.1080 0.5299
0.2823 0.8698 4000 0.0939 0.4914
0.2459 1.0873 5000 0.0840 0.4570
0.2005 1.3047 6000 0.0776 0.4364
0.2081 1.5222 7000 0.0724 0.4157
0.1918 1.7396 8000 0.0702 0.4132

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0