Edit model card

whisper-small-full-data-language-v1-20ep

This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1491

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: tpu
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 5000
  • training_steps: 63840

Training results

Training Loss Epoch Step Validation Loss
0.1819 1.57 5000 0.3275
0.1222 3.13 10000 0.2598
0.1007 4.7 15000 0.2338
0.0847 6.27 20000 0.2120
0.0743 7.83 25000 0.2002
0.0601 9.4 30000 0.1898
0.0561 10.97 35000 0.1776
0.0441 12.53 40000 0.1712
0.0359 14.1 45000 0.1652
0.0303 15.67 50000 0.1583
0.0239 17.23 55000 0.1543
0.0206 18.8 60000 0.1504

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.1.0a0+gitcc01568
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.