Update tokenization_indictrans.py
#7
by
VarunGumma
- opened
- tokenization_indictrans.py +133 -140
tokenization_indictrans.py
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
import os
|
2 |
import json
|
|
|
3 |
|
|
|
4 |
from typing import Dict, List, Optional, Union, Tuple
|
5 |
|
6 |
-
from transformers.utils import logging
|
7 |
from sentencepiece import SentencePieceProcessor
|
8 |
from transformers.tokenization_utils import PreTrainedTokenizer
|
9 |
|
@@ -12,44 +13,45 @@ logger = logging.get_logger(__name__)
|
|
12 |
|
13 |
SPIECE_UNDERLINE = "▁"
|
14 |
|
15 |
-
SPECIAL_TAGS
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
}
|
|
|
53 |
|
54 |
VOCAB_FILES_NAMES = {
|
55 |
"src_vocab_fp": "dict.SRC.json",
|
@@ -60,9 +62,8 @@ VOCAB_FILES_NAMES = {
|
|
60 |
|
61 |
|
62 |
class IndicTransTokenizer(PreTrainedTokenizer):
|
63 |
-
_added_tokens_encoder = {}
|
64 |
-
_added_tokens_decoder = {}
|
65 |
-
|
66 |
vocab_files_names = VOCAB_FILES_NAMES
|
67 |
model_input_names = ["input_ids", "attention_mask"]
|
68 |
|
@@ -79,43 +80,51 @@ class IndicTransTokenizer(PreTrainedTokenizer):
|
|
79 |
do_lower_case=False,
|
80 |
**kwargs,
|
81 |
):
|
82 |
-
|
83 |
-
self.src = True
|
84 |
-
|
85 |
self.src_vocab_fp = src_vocab_fp
|
86 |
self.tgt_vocab_fp = tgt_vocab_fp
|
87 |
self.src_spm_fp = src_spm_fp
|
88 |
self.tgt_spm_fp = tgt_spm_fp
|
89 |
|
90 |
-
|
91 |
-
self.
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
|
96 |
-
if self.unk_token not in self.
|
97 |
raise KeyError("<unk> token must be in vocab")
|
98 |
-
|
99 |
-
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
assert self.pad_token in self.encoder
|
105 |
-
self.decoder_rev = {v: k for k, v in self.decoder.items()}
|
106 |
|
107 |
-
#
|
108 |
self.src_spm = self._load_spm(self.src_spm_fp)
|
109 |
self.tgt_spm = self._load_spm(self.tgt_spm_fp)
|
110 |
|
111 |
-
|
112 |
-
self.
|
113 |
-
self.current_encoder_rev = self.encoder_rev
|
114 |
|
115 |
-
|
116 |
-
self.
|
117 |
-
self.
|
118 |
-
self.
|
|
|
119 |
|
120 |
super().__init__(
|
121 |
src_vocab_file=self.src_vocab_fp,
|
@@ -128,134 +137,118 @@ class IndicTransTokenizer(PreTrainedTokenizer):
|
|
128 |
**kwargs,
|
129 |
)
|
130 |
|
131 |
-
def add_new_special_tags(self, new_tags: List[str]):
|
132 |
-
SPECIAL_TAGS
|
|
|
133 |
|
134 |
-
def _switch_to_input_mode(self):
|
135 |
-
self.
|
136 |
self.padding_side = "left"
|
137 |
-
self.
|
138 |
-
self.
|
139 |
-
self.
|
140 |
|
141 |
-
def _switch_to_target_mode(self):
|
142 |
-
self.
|
143 |
self.padding_side = "right"
|
144 |
-
self.
|
145 |
-
self.
|
146 |
-
self.
|
147 |
|
148 |
-
|
|
|
149 |
return SentencePieceProcessor(model_file=path)
|
150 |
|
151 |
-
|
|
|
152 |
with open(path, "w", encoding="utf-8") as f:
|
153 |
json.dump(data, f, indent=2)
|
154 |
|
155 |
-
|
|
|
156 |
with open(path, "r", encoding="utf-8") as f:
|
157 |
return json.load(f)
|
158 |
|
159 |
-
def _split_tags(self, tokens: List[str]) -> Tuple[List[str], List[str]]:
|
160 |
-
tags = [token for token in tokens if token in SPECIAL_TAGS]
|
161 |
-
tokens = [token for token in tokens if token not in SPECIAL_TAGS]
|
162 |
-
return tags, tokens
|
163 |
-
|
164 |
-
def _split_pads(self, tokens: List[str]) -> Tuple[List[str], List[str]]:
|
165 |
-
pads = [token for token in tokens if token == self.pad_token]
|
166 |
-
tokens = [token for token in tokens if token != self.pad_token]
|
167 |
-
return pads, tokens
|
168 |
-
|
169 |
@property
|
170 |
def src_vocab_size(self) -> int:
|
171 |
-
return len(self.
|
172 |
|
173 |
@property
|
174 |
def tgt_vocab_size(self) -> int:
|
175 |
-
return len(self.
|
176 |
|
177 |
def get_src_vocab(self) -> Dict[str, int]:
|
178 |
-
return dict(self.
|
179 |
|
180 |
def get_tgt_vocab(self) -> Dict[str, int]:
|
181 |
-
return dict(self.
|
182 |
|
183 |
-
# hack override
|
184 |
def get_vocab(self) -> Dict[str, int]:
|
185 |
return self.get_src_vocab()
|
186 |
|
187 |
-
# hack override
|
188 |
@property
|
189 |
def vocab_size(self) -> int:
|
190 |
return self.src_vocab_size
|
191 |
|
|
|
192 |
def _convert_token_to_id(self, token: str) -> int:
|
193 |
-
|
194 |
-
return self.current_encoder.get(token, self.current_encoder[self.unk_token])
|
195 |
|
|
|
196 |
def _convert_id_to_token(self, index: int) -> str:
|
197 |
-
|
198 |
-
return self.current_encoder_rev.get(index, self.unk_token)
|
199 |
|
200 |
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
201 |
-
"""
|
202 |
-
pads, tokens = self._split_pads(tokens)
|
203 |
-
|
204 |
-
if self.src:
|
205 |
|
206 |
-
|
|
|
|
|
207 |
|
208 |
-
|
209 |
-
|
210 |
-
+ " "
|
211 |
-
+ " ".join(tags)
|
212 |
-
+ " "
|
213 |
-
+ "".join(non_tags).replace(SPIECE_UNDERLINE, " ").strip()
|
214 |
-
)
|
215 |
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
)
|
221 |
-
|
222 |
-
|
223 |
-
if self.src:
|
224 |
-
tokens = text.split(" ")
|
225 |
-
tags, non_tags = self._split_tags(tokens)
|
226 |
-
text = " ".join(non_tags)
|
227 |
-
tokens = self.current_spm.EncodeAsPieces(text)
|
228 |
-
return tags + tokens
|
229 |
-
else:
|
230 |
-
return self.current_spm.EncodeAsPieces(text)
|
231 |
|
232 |
def build_inputs_with_special_tokens(
|
233 |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
234 |
) -> List[int]:
|
235 |
-
|
236 |
-
return token_ids_0 + [self.eos_token_id]
|
237 |
-
# We don't expect to process pairs, but leave the pair logic for API consistency
|
238 |
-
return token_ids_0 + [self.eos_token_id] + token_ids_1 + [self.eos_token_id]
|
239 |
|
240 |
def save_vocabulary(
|
241 |
self, save_directory: str, filename_prefix: Optional[str] = None
|
242 |
-
) -> Tuple[str]:
|
243 |
if not os.path.isdir(save_directory):
|
244 |
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
245 |
-
return
|
246 |
|
247 |
src_spm_fp = os.path.join(save_directory, "model.SRC")
|
248 |
tgt_spm_fp = os.path.join(save_directory, "model.TGT")
|
249 |
src_vocab_fp = os.path.join(save_directory, "dict.SRC.json")
|
250 |
tgt_vocab_fp = os.path.join(save_directory, "dict.TGT.json")
|
251 |
|
252 |
-
self._save_json(self.
|
253 |
-
self._save_json(self.
|
254 |
-
|
255 |
-
with open(src_spm_fp, "wb") as f:
|
256 |
-
f.write(self.src_spm.serialized_model_proto())
|
257 |
|
258 |
-
|
259 |
-
|
|
|
260 |
|
261 |
return src_vocab_fp, tgt_vocab_fp, src_spm_fp, tgt_spm_fp
|
|
|
1 |
import os
|
2 |
import json
|
3 |
+
from functools import lru_cache
|
4 |
|
5 |
+
from transformers.utils import logging
|
6 |
from typing import Dict, List, Optional, Union, Tuple
|
7 |
|
|
|
8 |
from sentencepiece import SentencePieceProcessor
|
9 |
from transformers.tokenization_utils import PreTrainedTokenizer
|
10 |
|
|
|
13 |
|
14 |
SPIECE_UNDERLINE = "▁"
|
15 |
|
16 |
+
# Convert SPECIAL_TAGS to a frozen set for faster lookups
|
17 |
+
SPECIAL_TAGS = frozenset(
|
18 |
+
{
|
19 |
+
"asm_Beng",
|
20 |
+
"awa_Deva",
|
21 |
+
"ben_Beng",
|
22 |
+
"bho_Deva",
|
23 |
+
"brx_Deva",
|
24 |
+
"doi_Deva",
|
25 |
+
"eng_Latn",
|
26 |
+
"gom_Deva",
|
27 |
+
"gon_Deva",
|
28 |
+
"guj_Gujr",
|
29 |
+
"hin_Deva",
|
30 |
+
"hne_Deva",
|
31 |
+
"kan_Knda",
|
32 |
+
"kas_Arab",
|
33 |
+
"kas_Deva",
|
34 |
+
"kha_Latn",
|
35 |
+
"lus_Latn",
|
36 |
+
"mag_Deva",
|
37 |
+
"mai_Deva",
|
38 |
+
"mal_Mlym",
|
39 |
+
"mar_Deva",
|
40 |
+
"mni_Beng",
|
41 |
+
"mni_Mtei",
|
42 |
+
"npi_Deva",
|
43 |
+
"ory_Orya",
|
44 |
+
"pan_Guru",
|
45 |
+
"san_Deva",
|
46 |
+
"sat_Olck",
|
47 |
+
"snd_Arab",
|
48 |
+
"snd_Deva",
|
49 |
+
"tam_Taml",
|
50 |
+
"tel_Telu",
|
51 |
+
"urd_Arab",
|
52 |
+
"unr_Deva",
|
53 |
+
}
|
54 |
+
)
|
55 |
|
56 |
VOCAB_FILES_NAMES = {
|
57 |
"src_vocab_fp": "dict.SRC.json",
|
|
|
62 |
|
63 |
|
64 |
class IndicTransTokenizer(PreTrainedTokenizer):
|
65 |
+
_added_tokens_encoder: Dict[str, int] = {}
|
66 |
+
_added_tokens_decoder: Dict[str, int] = {}
|
|
|
67 |
vocab_files_names = VOCAB_FILES_NAMES
|
68 |
model_input_names = ["input_ids", "attention_mask"]
|
69 |
|
|
|
80 |
do_lower_case=False,
|
81 |
**kwargs,
|
82 |
):
|
|
|
|
|
|
|
83 |
self.src_vocab_fp = src_vocab_fp
|
84 |
self.tgt_vocab_fp = tgt_vocab_fp
|
85 |
self.src_spm_fp = src_spm_fp
|
86 |
self.tgt_spm_fp = tgt_spm_fp
|
87 |
|
88 |
+
# Store token content directly instead of accessing .content
|
89 |
+
self.unk_token = (
|
90 |
+
hasattr(unk_token, "content") and unk_token.content or unk_token
|
91 |
+
)
|
92 |
+
self.pad_token = (
|
93 |
+
hasattr(pad_token, "content") and pad_token.content or pad_token
|
94 |
+
)
|
95 |
+
self.eos_token = (
|
96 |
+
hasattr(eos_token, "content") and eos_token.content or eos_token
|
97 |
+
)
|
98 |
+
self.bos_token = (
|
99 |
+
hasattr(bos_token, "content") and bos_token.content or bos_token
|
100 |
+
)
|
101 |
+
|
102 |
+
# Load vocabularies
|
103 |
+
self.src_encoder = self._load_json(self.src_vocab_fp)
|
104 |
+
self.tgt_encoder = self._load_json(self.tgt_vocab_fp)
|
105 |
|
106 |
+
# Validate tokens
|
107 |
+
if self.unk_token not in self.src_encoder:
|
108 |
raise KeyError("<unk> token must be in vocab")
|
109 |
+
if self.pad_token not in self.src_encoder:
|
110 |
+
raise KeyError("<pad> token must be in vocab")
|
111 |
|
112 |
+
# Pre-compute reverse mappings
|
113 |
+
self.src_decoder = {v: k for k, v in self.src_encoder.items()}
|
114 |
+
self.tgt_decoder = {v: k for k, v in self.tgt_encoder.items()}
|
|
|
|
|
115 |
|
116 |
+
# Load SPM models
|
117 |
self.src_spm = self._load_spm(self.src_spm_fp)
|
118 |
self.tgt_spm = self._load_spm(self.tgt_spm_fp)
|
119 |
|
120 |
+
# Initialize current settings
|
121 |
+
self._switch_to_input_mode()
|
|
|
122 |
|
123 |
+
# Cache token IDs
|
124 |
+
self.unk_token_id = self.src_encoder[self.unk_token]
|
125 |
+
self.pad_token_id = self.src_encoder[self.pad_token]
|
126 |
+
self.eos_token_id = self.src_encoder[self.eos_token]
|
127 |
+
self.bos_token_id = self.src_encoder[self.bos_token]
|
128 |
|
129 |
super().__init__(
|
130 |
src_vocab_file=self.src_vocab_fp,
|
|
|
137 |
**kwargs,
|
138 |
)
|
139 |
|
140 |
+
def add_new_special_tags(self, new_tags: List[str]) -> None:
|
141 |
+
global SPECIAL_TAGS
|
142 |
+
SPECIAL_TAGS = frozenset(SPECIAL_TAGS | set(new_tags))
|
143 |
|
144 |
+
def _switch_to_input_mode(self) -> None:
|
145 |
+
self.spm = self.src_spm
|
146 |
self.padding_side = "left"
|
147 |
+
self.encoder = self.src_encoder
|
148 |
+
self.decoder = self.src_decoder
|
149 |
+
self._tokenize = self._src_tokenize
|
150 |
|
151 |
+
def _switch_to_target_mode(self) -> None:
|
152 |
+
self.spm = self.tgt_spm
|
153 |
self.padding_side = "right"
|
154 |
+
self.encoder = self.tgt_encoder
|
155 |
+
self.decoder = self.tgt_decoder
|
156 |
+
self._tokenize = self._tgt_tokenize
|
157 |
|
158 |
+
@staticmethod
|
159 |
+
def _load_spm(path: str) -> SentencePieceProcessor:
|
160 |
return SentencePieceProcessor(model_file=path)
|
161 |
|
162 |
+
@staticmethod
|
163 |
+
def _save_json(data: Union[Dict, List], path: str) -> None:
|
164 |
with open(path, "w", encoding="utf-8") as f:
|
165 |
json.dump(data, f, indent=2)
|
166 |
|
167 |
+
@staticmethod
|
168 |
+
def _load_json(path: str) -> Union[Dict, List]:
|
169 |
with open(path, "r", encoding="utf-8") as f:
|
170 |
return json.load(f)
|
171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
@property
|
173 |
def src_vocab_size(self) -> int:
|
174 |
+
return len(self.src_encoder)
|
175 |
|
176 |
@property
|
177 |
def tgt_vocab_size(self) -> int:
|
178 |
+
return len(self.tgt_encoder)
|
179 |
|
180 |
def get_src_vocab(self) -> Dict[str, int]:
|
181 |
+
return dict(self.src_encoder, **self.added_tokens_encoder)
|
182 |
|
183 |
def get_tgt_vocab(self) -> Dict[str, int]:
|
184 |
+
return dict(self.tgt_encoder, **self.added_tokens_decoder)
|
185 |
|
|
|
186 |
def get_vocab(self) -> Dict[str, int]:
|
187 |
return self.get_src_vocab()
|
188 |
|
|
|
189 |
@property
|
190 |
def vocab_size(self) -> int:
|
191 |
return self.src_vocab_size
|
192 |
|
193 |
+
@lru_cache(maxsize=10240)
|
194 |
def _convert_token_to_id(self, token: str) -> int:
|
195 |
+
return self.encoder.get(token, self.unk_token_id)
|
|
|
196 |
|
197 |
+
@lru_cache(maxsize=10240)
|
198 |
def _convert_id_to_token(self, index: int) -> str:
|
199 |
+
return self.decoder.get(index, self.unk_token)
|
|
|
200 |
|
201 |
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
202 |
+
return "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
|
|
|
|
|
|
|
203 |
|
204 |
+
def _src_tokenize(self, text: str) -> List[str]:
|
205 |
+
src_lang, tgt_lang, text = text.split(" ", 2)
|
206 |
+
return [src_lang, tgt_lang] + self.spm.EncodeAsPieces(text)
|
207 |
|
208 |
+
def _tgt_tokenize(self, text: str) -> List[str]:
|
209 |
+
return self.spm.EncodeAsPieces(text)
|
|
|
|
|
|
|
|
|
|
|
210 |
|
211 |
+
def _decode(
|
212 |
+
self,
|
213 |
+
token_ids: Union[int, List[int]],
|
214 |
+
skip_special_tokens: bool = False,
|
215 |
+
clean_up_tokenization_spaces: bool = None,
|
216 |
+
spaces_between_special_tokens: bool = True,
|
217 |
+
**kwargs,
|
218 |
+
) -> str:
|
219 |
+
self._switch_to_target_mode()
|
220 |
+
decoded_token_ids = super()._decode(
|
221 |
+
token_ids=token_ids,
|
222 |
+
skip_special_tokens=skip_special_tokens,
|
223 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
224 |
+
spaces_between_special_tokens=spaces_between_special_tokens,
|
225 |
+
**kwargs,
|
226 |
)
|
227 |
+
self._switch_to_input_mode()
|
228 |
+
return decoded_token_ids
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
|
230 |
def build_inputs_with_special_tokens(
|
231 |
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
232 |
) -> List[int]:
|
233 |
+
return token_ids_0 + [self.eos_token_id]
|
|
|
|
|
|
|
234 |
|
235 |
def save_vocabulary(
|
236 |
self, save_directory: str, filename_prefix: Optional[str] = None
|
237 |
+
) -> Tuple[str, ...]:
|
238 |
if not os.path.isdir(save_directory):
|
239 |
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
240 |
+
return ()
|
241 |
|
242 |
src_spm_fp = os.path.join(save_directory, "model.SRC")
|
243 |
tgt_spm_fp = os.path.join(save_directory, "model.TGT")
|
244 |
src_vocab_fp = os.path.join(save_directory, "dict.SRC.json")
|
245 |
tgt_vocab_fp = os.path.join(save_directory, "dict.TGT.json")
|
246 |
|
247 |
+
self._save_json(self.src_encoder, src_vocab_fp)
|
248 |
+
self._save_json(self.tgt_encoder, tgt_vocab_fp)
|
|
|
|
|
|
|
249 |
|
250 |
+
for fp, spm in [(src_spm_fp, self.src_spm), (tgt_spm_fp, self.tgt_spm)]:
|
251 |
+
with open(fp, "wb") as f:
|
252 |
+
f.write(spm.serialized_model_proto())
|
253 |
|
254 |
return src_vocab_fp, tgt_vocab_fp, src_spm_fp, tgt_spm_fp
|