pos_final_mono_de

This model is a fine-tuned version of dbmdz/bert-base-german-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1567
  • Precision: 0.9771
  • Recall: 0.9791
  • F1: 0.9781
  • Accuracy: 0.9810

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 1024
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 40.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.99 128 0.2357 0.9443 0.9413 0.9428 0.9475
No log 1.99 256 0.0513 0.9843 0.9842 0.9842 0.9853
No log 2.99 384 0.0406 0.9868 0.9866 0.9867 0.9875
0.6822 3.99 512 0.0365 0.9877 0.9877 0.9877 0.9885
0.6822 4.99 640 0.0352 0.9881 0.9882 0.9882 0.9890
0.6822 5.99 768 0.0345 0.9887 0.9887 0.9887 0.9895
0.6822 6.99 896 0.0353 0.9888 0.9888 0.9888 0.9896
0.024 7.99 1024 0.0371 0.9886 0.9888 0.9887 0.9895
0.024 8.99 1152 0.0387 0.9888 0.9888 0.9888 0.9896
0.024 9.99 1280 0.0402 0.9890 0.9889 0.9890 0.9898
0.024 10.99 1408 0.0429 0.9889 0.9890 0.9889 0.9897
0.0128 11.99 1536 0.0454 0.9889 0.9889 0.9889 0.9896
0.0128 12.99 1664 0.0461 0.9889 0.9889 0.9889 0.9897
0.0128 13.99 1792 0.0477 0.9892 0.9891 0.9891 0.9899
0.0128 14.99 1920 0.0507 0.9890 0.9891 0.9890 0.9898
0.0069 15.99 2048 0.0514 0.9893 0.9893 0.9893 0.9901
0.0069 16.99 2176 0.0530 0.9892 0.9892 0.9892 0.9899
0.0069 17.99 2304 0.0552 0.9890 0.9891 0.9891 0.9898
0.0069 18.99 2432 0.0567 0.9891 0.9892 0.9892 0.9898
0.0037 19.99 2560 0.0577 0.9892 0.9893 0.9892 0.9900
0.0037 20.99 2688 0.0592 0.9892 0.9893 0.9893 0.9899
0.0037 21.99 2816 0.0606 0.9893 0.9893 0.9893 0.9900
0.0037 22.99 2944 0.0628 0.9893 0.9893 0.9893 0.9900
0.0023 23.99 3072 0.0629 0.9892 0.9891 0.9891 0.9899
0.0023 24.99 3200 0.0625 0.9892 0.9893 0.9893 0.9900
0.0023 25.99 3328 0.0636 0.9893 0.9893 0.9893 0.9900
0.0023 26.99 3456 0.0650 0.9894 0.9894 0.9894 0.9901
0.0017 27.99 3584 0.0644 0.9894 0.9894 0.9894 0.9901
0.0017 28.99 3712 0.0656 0.9895 0.9895 0.9895 0.9901
0.0017 29.99 3840 0.0668 0.9895 0.9895 0.9895 0.9902
0.0017 30.99 3968 0.0666 0.9895 0.9894 0.9894 0.9901
0.0011 31.99 4096 0.0678 0.9894 0.9894 0.9894 0.9900
0.0011 32.99 4224 0.0685 0.9896 0.9896 0.9896 0.9902
0.0011 33.99 4352 0.0692 0.9894 0.9894 0.9894 0.9901
0.0011 34.99 4480 0.0698 0.9895 0.9895 0.9895 0.9902
0.0009 35.99 4608 0.0698 0.9894 0.9894 0.9894 0.9901
0.0009 36.99 4736 0.0695 0.9895 0.9895 0.9895 0.9902
0.0009 37.99 4864 0.0696 0.9894 0.9895 0.9894 0.9902
0.0009 38.99 4992 0.0699 0.9895 0.9895 0.9895 0.9902
0.0007 39.99 5120 0.0697 0.9894 0.9894 0.9894 0.9901

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.12.0
  • Datasets 2.18.0
  • Tokenizers 0.13.2
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including pranaydeeps/lettuce_pos_de_mono