pranaydeeps
commited on
Upload folder using huggingface_hub
Browse files- README.md +108 -0
- all_results.json +17 -0
- config.json +139 -0
- eval_results.json +12 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +18 -0
- train_results.json +8 -0
- trainer_state.json +565 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: pos_final_mono_de
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# pos_final_mono_de
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [dbmdz/bert-base-german-cased](https://huggingface.co/dbmdz/bert-base-german-cased) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.1567
|
23 |
+
- Precision: 0.9771
|
24 |
+
- Recall: 0.9791
|
25 |
+
- F1: 0.9781
|
26 |
+
- Accuracy: 0.9810
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 5e-05
|
46 |
+
- train_batch_size: 256
|
47 |
+
- eval_batch_size: 256
|
48 |
+
- seed: 42
|
49 |
+
- gradient_accumulation_steps: 4
|
50 |
+
- total_train_batch_size: 1024
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- lr_scheduler_warmup_steps: 500
|
54 |
+
- num_epochs: 40.0
|
55 |
+
- mixed_precision_training: Native AMP
|
56 |
+
|
57 |
+
### Training results
|
58 |
+
|
59 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
60 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
61 |
+
| No log | 0.99 | 128 | 0.2357 | 0.9443 | 0.9413 | 0.9428 | 0.9475 |
|
62 |
+
| No log | 1.99 | 256 | 0.0513 | 0.9843 | 0.9842 | 0.9842 | 0.9853 |
|
63 |
+
| No log | 2.99 | 384 | 0.0406 | 0.9868 | 0.9866 | 0.9867 | 0.9875 |
|
64 |
+
| 0.6822 | 3.99 | 512 | 0.0365 | 0.9877 | 0.9877 | 0.9877 | 0.9885 |
|
65 |
+
| 0.6822 | 4.99 | 640 | 0.0352 | 0.9881 | 0.9882 | 0.9882 | 0.9890 |
|
66 |
+
| 0.6822 | 5.99 | 768 | 0.0345 | 0.9887 | 0.9887 | 0.9887 | 0.9895 |
|
67 |
+
| 0.6822 | 6.99 | 896 | 0.0353 | 0.9888 | 0.9888 | 0.9888 | 0.9896 |
|
68 |
+
| 0.024 | 7.99 | 1024 | 0.0371 | 0.9886 | 0.9888 | 0.9887 | 0.9895 |
|
69 |
+
| 0.024 | 8.99 | 1152 | 0.0387 | 0.9888 | 0.9888 | 0.9888 | 0.9896 |
|
70 |
+
| 0.024 | 9.99 | 1280 | 0.0402 | 0.9890 | 0.9889 | 0.9890 | 0.9898 |
|
71 |
+
| 0.024 | 10.99 | 1408 | 0.0429 | 0.9889 | 0.9890 | 0.9889 | 0.9897 |
|
72 |
+
| 0.0128 | 11.99 | 1536 | 0.0454 | 0.9889 | 0.9889 | 0.9889 | 0.9896 |
|
73 |
+
| 0.0128 | 12.99 | 1664 | 0.0461 | 0.9889 | 0.9889 | 0.9889 | 0.9897 |
|
74 |
+
| 0.0128 | 13.99 | 1792 | 0.0477 | 0.9892 | 0.9891 | 0.9891 | 0.9899 |
|
75 |
+
| 0.0128 | 14.99 | 1920 | 0.0507 | 0.9890 | 0.9891 | 0.9890 | 0.9898 |
|
76 |
+
| 0.0069 | 15.99 | 2048 | 0.0514 | 0.9893 | 0.9893 | 0.9893 | 0.9901 |
|
77 |
+
| 0.0069 | 16.99 | 2176 | 0.0530 | 0.9892 | 0.9892 | 0.9892 | 0.9899 |
|
78 |
+
| 0.0069 | 17.99 | 2304 | 0.0552 | 0.9890 | 0.9891 | 0.9891 | 0.9898 |
|
79 |
+
| 0.0069 | 18.99 | 2432 | 0.0567 | 0.9891 | 0.9892 | 0.9892 | 0.9898 |
|
80 |
+
| 0.0037 | 19.99 | 2560 | 0.0577 | 0.9892 | 0.9893 | 0.9892 | 0.9900 |
|
81 |
+
| 0.0037 | 20.99 | 2688 | 0.0592 | 0.9892 | 0.9893 | 0.9893 | 0.9899 |
|
82 |
+
| 0.0037 | 21.99 | 2816 | 0.0606 | 0.9893 | 0.9893 | 0.9893 | 0.9900 |
|
83 |
+
| 0.0037 | 22.99 | 2944 | 0.0628 | 0.9893 | 0.9893 | 0.9893 | 0.9900 |
|
84 |
+
| 0.0023 | 23.99 | 3072 | 0.0629 | 0.9892 | 0.9891 | 0.9891 | 0.9899 |
|
85 |
+
| 0.0023 | 24.99 | 3200 | 0.0625 | 0.9892 | 0.9893 | 0.9893 | 0.9900 |
|
86 |
+
| 0.0023 | 25.99 | 3328 | 0.0636 | 0.9893 | 0.9893 | 0.9893 | 0.9900 |
|
87 |
+
| 0.0023 | 26.99 | 3456 | 0.0650 | 0.9894 | 0.9894 | 0.9894 | 0.9901 |
|
88 |
+
| 0.0017 | 27.99 | 3584 | 0.0644 | 0.9894 | 0.9894 | 0.9894 | 0.9901 |
|
89 |
+
| 0.0017 | 28.99 | 3712 | 0.0656 | 0.9895 | 0.9895 | 0.9895 | 0.9901 |
|
90 |
+
| 0.0017 | 29.99 | 3840 | 0.0668 | 0.9895 | 0.9895 | 0.9895 | 0.9902 |
|
91 |
+
| 0.0017 | 30.99 | 3968 | 0.0666 | 0.9895 | 0.9894 | 0.9894 | 0.9901 |
|
92 |
+
| 0.0011 | 31.99 | 4096 | 0.0678 | 0.9894 | 0.9894 | 0.9894 | 0.9900 |
|
93 |
+
| 0.0011 | 32.99 | 4224 | 0.0685 | 0.9896 | 0.9896 | 0.9896 | 0.9902 |
|
94 |
+
| 0.0011 | 33.99 | 4352 | 0.0692 | 0.9894 | 0.9894 | 0.9894 | 0.9901 |
|
95 |
+
| 0.0011 | 34.99 | 4480 | 0.0698 | 0.9895 | 0.9895 | 0.9895 | 0.9902 |
|
96 |
+
| 0.0009 | 35.99 | 4608 | 0.0698 | 0.9894 | 0.9894 | 0.9894 | 0.9901 |
|
97 |
+
| 0.0009 | 36.99 | 4736 | 0.0695 | 0.9895 | 0.9895 | 0.9895 | 0.9902 |
|
98 |
+
| 0.0009 | 37.99 | 4864 | 0.0696 | 0.9894 | 0.9895 | 0.9894 | 0.9902 |
|
99 |
+
| 0.0009 | 38.99 | 4992 | 0.0699 | 0.9895 | 0.9895 | 0.9895 | 0.9902 |
|
100 |
+
| 0.0007 | 39.99 | 5120 | 0.0697 | 0.9894 | 0.9894 | 0.9894 | 0.9901 |
|
101 |
+
|
102 |
+
|
103 |
+
### Framework versions
|
104 |
+
|
105 |
+
- Transformers 4.25.1
|
106 |
+
- Pytorch 1.12.0
|
107 |
+
- Datasets 2.18.0
|
108 |
+
- Tokenizers 0.13.2
|
all_results.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 39.99,
|
3 |
+
"eval_accuracy": 0.9810301218670959,
|
4 |
+
"eval_f1": 0.9781145801758109,
|
5 |
+
"eval_loss": 0.1567157655954361,
|
6 |
+
"eval_precision": 0.9771075581395349,
|
7 |
+
"eval_recall": 0.9791236800582594,
|
8 |
+
"eval_runtime": 1.068,
|
9 |
+
"eval_samples": 437,
|
10 |
+
"eval_samples_per_second": 409.172,
|
11 |
+
"eval_steps_per_second": 1.873,
|
12 |
+
"train_loss": 0.07192220802244265,
|
13 |
+
"train_runtime": 4057.7347,
|
14 |
+
"train_samples": 131833,
|
15 |
+
"train_samples_per_second": 1299.572,
|
16 |
+
"train_steps_per_second": 1.262
|
17 |
+
}
|
config.json
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "dbmdz/bert-base-german-cased",
|
3 |
+
"architectures": [
|
4 |
+
"BertForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"finetuning_task": "pos",
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "ADV",
|
14 |
+
"1": "VMINF",
|
15 |
+
"2": "APPO",
|
16 |
+
"3": "CARD",
|
17 |
+
"4": "PTKVZ",
|
18 |
+
"5": "PDAT",
|
19 |
+
"6": "PTKZU",
|
20 |
+
"7": "PRELS",
|
21 |
+
"8": "ITJ",
|
22 |
+
"9": "APPR",
|
23 |
+
"10": "PIAT",
|
24 |
+
"11": "NN",
|
25 |
+
"12": "PWS",
|
26 |
+
"13": "VVINF",
|
27 |
+
"14": "APPRART",
|
28 |
+
"15": "VAPP",
|
29 |
+
"16": "APZR",
|
30 |
+
"17": "KOKOM",
|
31 |
+
"18": "$,",
|
32 |
+
"19": "PDS",
|
33 |
+
"20": "VAIMP",
|
34 |
+
"21": "PTKANT",
|
35 |
+
"22": "PRF",
|
36 |
+
"23": "PWAV",
|
37 |
+
"24": "KON",
|
38 |
+
"25": "VVPP",
|
39 |
+
"26": "PPOSS",
|
40 |
+
"27": "VVFIN",
|
41 |
+
"28": "PTKNEG",
|
42 |
+
"29": "ART",
|
43 |
+
"30": "VMFIN",
|
44 |
+
"31": "FW",
|
45 |
+
"32": "PPER",
|
46 |
+
"33": "$",
|
47 |
+
"34": "VAINF",
|
48 |
+
"35": "PTKA",
|
49 |
+
"36": "$.",
|
50 |
+
"37": "ADJA",
|
51 |
+
"38": "XY",
|
52 |
+
"39": "KOUS",
|
53 |
+
"40": "PPOSAT",
|
54 |
+
"41": "VAFIN",
|
55 |
+
"42": "FM",
|
56 |
+
"43": "PIS",
|
57 |
+
"44": "VVIZU",
|
58 |
+
"45": "ADJD",
|
59 |
+
"46": "KOUI",
|
60 |
+
"47": "PROAV",
|
61 |
+
"48": "PRELAT",
|
62 |
+
"49": "VMPP",
|
63 |
+
"50": "VVIMP",
|
64 |
+
"51": "PWAT",
|
65 |
+
"52": "TRUNC",
|
66 |
+
"53": "NE"
|
67 |
+
},
|
68 |
+
"initializer_range": 0.02,
|
69 |
+
"intermediate_size": 3072,
|
70 |
+
"label2id": {
|
71 |
+
"$": 33,
|
72 |
+
"$,": 18,
|
73 |
+
"$.": 36,
|
74 |
+
"ADJA": 37,
|
75 |
+
"ADJD": 45,
|
76 |
+
"ADV": 0,
|
77 |
+
"APPO": 2,
|
78 |
+
"APPR": 9,
|
79 |
+
"APPRART": 14,
|
80 |
+
"APZR": 16,
|
81 |
+
"ART": 29,
|
82 |
+
"CARD": 3,
|
83 |
+
"FM": 42,
|
84 |
+
"FW": 31,
|
85 |
+
"ITJ": 8,
|
86 |
+
"KOKOM": 17,
|
87 |
+
"KON": 24,
|
88 |
+
"KOUI": 46,
|
89 |
+
"KOUS": 39,
|
90 |
+
"NE": 53,
|
91 |
+
"NN": 11,
|
92 |
+
"PDAT": 5,
|
93 |
+
"PDS": 19,
|
94 |
+
"PIAT": 10,
|
95 |
+
"PIS": 43,
|
96 |
+
"PPER": 32,
|
97 |
+
"PPOSAT": 40,
|
98 |
+
"PPOSS": 26,
|
99 |
+
"PRELAT": 48,
|
100 |
+
"PRELS": 7,
|
101 |
+
"PRF": 22,
|
102 |
+
"PROAV": 47,
|
103 |
+
"PTKA": 35,
|
104 |
+
"PTKANT": 21,
|
105 |
+
"PTKNEG": 28,
|
106 |
+
"PTKVZ": 4,
|
107 |
+
"PTKZU": 6,
|
108 |
+
"PWAT": 51,
|
109 |
+
"PWAV": 23,
|
110 |
+
"PWS": 12,
|
111 |
+
"TRUNC": 52,
|
112 |
+
"VAFIN": 41,
|
113 |
+
"VAIMP": 20,
|
114 |
+
"VAINF": 34,
|
115 |
+
"VAPP": 15,
|
116 |
+
"VMFIN": 30,
|
117 |
+
"VMINF": 1,
|
118 |
+
"VMPP": 49,
|
119 |
+
"VVFIN": 27,
|
120 |
+
"VVIMP": 50,
|
121 |
+
"VVINF": 13,
|
122 |
+
"VVIZU": 44,
|
123 |
+
"VVPP": 25,
|
124 |
+
"XY": 38
|
125 |
+
},
|
126 |
+
"layer_norm_eps": 1e-12,
|
127 |
+
"max_position_embeddings": 512,
|
128 |
+
"model_type": "bert",
|
129 |
+
"num_attention_heads": 12,
|
130 |
+
"num_hidden_layers": 12,
|
131 |
+
"output_past": true,
|
132 |
+
"pad_token_id": 0,
|
133 |
+
"position_embedding_type": "absolute",
|
134 |
+
"torch_dtype": "float32",
|
135 |
+
"transformers_version": "4.25.1",
|
136 |
+
"type_vocab_size": 2,
|
137 |
+
"use_cache": true,
|
138 |
+
"vocab_size": 31102
|
139 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 39.99,
|
3 |
+
"eval_accuracy": 0.9810301218670959,
|
4 |
+
"eval_f1": 0.9781145801758109,
|
5 |
+
"eval_loss": 0.1567157655954361,
|
6 |
+
"eval_precision": 0.9771075581395349,
|
7 |
+
"eval_recall": 0.9791236800582594,
|
8 |
+
"eval_runtime": 1.068,
|
9 |
+
"eval_samples": 437,
|
10 |
+
"eval_samples_per_second": 409.172,
|
11 |
+
"eval_steps_per_second": 1.873
|
12 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6c56e41223a9c0bf47efb09c096f4589a5af4ea4a1e4549dea5919e47dce0c69
|
3 |
+
size 437584881
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"do_basic_tokenize": true,
|
4 |
+
"do_lower_case": false,
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"max_len": 512,
|
7 |
+
"model_max_length": 512,
|
8 |
+
"name_or_path": "dbmdz/bert-base-german-cased",
|
9 |
+
"never_split": null,
|
10 |
+
"pad_token": "[PAD]",
|
11 |
+
"sep_token": "[SEP]",
|
12 |
+
"special_tokens_map_file": null,
|
13 |
+
"strip_accents": null,
|
14 |
+
"token": null,
|
15 |
+
"tokenize_chinese_chars": true,
|
16 |
+
"tokenizer_class": "BertTokenizer",
|
17 |
+
"unk_token": "[UNK]"
|
18 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 39.99,
|
3 |
+
"train_loss": 0.07192220802244265,
|
4 |
+
"train_runtime": 4057.7347,
|
5 |
+
"train_samples": 131833,
|
6 |
+
"train_samples_per_second": 1299.572,
|
7 |
+
"train_steps_per_second": 1.262
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,565 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.9895929814239887,
|
3 |
+
"best_model_checkpoint": "models/pos_final_mono_de/checkpoint-4224",
|
4 |
+
"epoch": 39.994174757281556,
|
5 |
+
"global_step": 5120,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.99,
|
12 |
+
"eval_accuracy": 0.9475099341812547,
|
13 |
+
"eval_f1": 0.9428053278974075,
|
14 |
+
"eval_loss": 0.235727921128273,
|
15 |
+
"eval_precision": 0.9442734211134948,
|
16 |
+
"eval_recall": 0.941341792581462,
|
17 |
+
"eval_runtime": 18.99,
|
18 |
+
"eval_samples_per_second": 771.406,
|
19 |
+
"eval_steps_per_second": 3.054,
|
20 |
+
"step": 128
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 1.99,
|
24 |
+
"eval_accuracy": 0.9852943432700717,
|
25 |
+
"eval_f1": 0.9842332493182053,
|
26 |
+
"eval_loss": 0.05128009244799614,
|
27 |
+
"eval_precision": 0.9842997713944935,
|
28 |
+
"eval_recall": 0.9841667362328519,
|
29 |
+
"eval_runtime": 19.2922,
|
30 |
+
"eval_samples_per_second": 759.323,
|
31 |
+
"eval_steps_per_second": 3.006,
|
32 |
+
"step": 256
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 2.99,
|
36 |
+
"eval_accuracy": 0.9875228217677473,
|
37 |
+
"eval_f1": 0.9867158568898448,
|
38 |
+
"eval_loss": 0.04063262417912483,
|
39 |
+
"eval_precision": 0.9867884320258268,
|
40 |
+
"eval_recall": 0.9866432924284164,
|
41 |
+
"eval_runtime": 19.7655,
|
42 |
+
"eval_samples_per_second": 741.14,
|
43 |
+
"eval_steps_per_second": 2.934,
|
44 |
+
"step": 384
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 3.9,
|
48 |
+
"learning_rate": 5e-05,
|
49 |
+
"loss": 0.6822,
|
50 |
+
"step": 500
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 3.99,
|
54 |
+
"eval_accuracy": 0.9884893907546909,
|
55 |
+
"eval_f1": 0.9876851402812782,
|
56 |
+
"eval_loss": 0.036450713872909546,
|
57 |
+
"eval_precision": 0.9876576580157648,
|
58 |
+
"eval_recall": 0.9877126240762605,
|
59 |
+
"eval_runtime": 18.3474,
|
60 |
+
"eval_samples_per_second": 798.424,
|
61 |
+
"eval_steps_per_second": 3.161,
|
62 |
+
"step": 512
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 4.99,
|
66 |
+
"eval_accuracy": 0.9889918532042529,
|
67 |
+
"eval_f1": 0.9881764176274528,
|
68 |
+
"eval_loss": 0.03515882417559624,
|
69 |
+
"eval_precision": 0.9881194651573207,
|
70 |
+
"eval_recall": 0.9882333766631287,
|
71 |
+
"eval_runtime": 19.0555,
|
72 |
+
"eval_samples_per_second": 768.756,
|
73 |
+
"eval_steps_per_second": 3.044,
|
74 |
+
"step": 640
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 5.99,
|
78 |
+
"eval_accuracy": 0.9894521241504165,
|
79 |
+
"eval_f1": 0.9887225068869429,
|
80 |
+
"eval_loss": 0.0344870425760746,
|
81 |
+
"eval_precision": 0.9887067858661908,
|
82 |
+
"eval_recall": 0.9887382284076499,
|
83 |
+
"eval_runtime": 18.7765,
|
84 |
+
"eval_samples_per_second": 780.176,
|
85 |
+
"eval_steps_per_second": 3.089,
|
86 |
+
"step": 768
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 6.99,
|
90 |
+
"eval_accuracy": 0.9896017122079197,
|
91 |
+
"eval_f1": 0.9887940595397575,
|
92 |
+
"eval_loss": 0.03525426983833313,
|
93 |
+
"eval_precision": 0.9887783373812941,
|
94 |
+
"eval_recall": 0.9888097821982119,
|
95 |
+
"eval_runtime": 18.226,
|
96 |
+
"eval_samples_per_second": 803.744,
|
97 |
+
"eval_steps_per_second": 3.182,
|
98 |
+
"step": 896
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 7.81,
|
102 |
+
"learning_rate": 4.458874458874459e-05,
|
103 |
+
"loss": 0.024,
|
104 |
+
"step": 1000
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 7.99,
|
108 |
+
"eval_accuracy": 0.9894866444713788,
|
109 |
+
"eval_f1": 0.9887030802192603,
|
110 |
+
"eval_loss": 0.037094976752996445,
|
111 |
+
"eval_precision": 0.9886480621017779,
|
112 |
+
"eval_recall": 0.9887581044605838,
|
113 |
+
"eval_runtime": 18.998,
|
114 |
+
"eval_samples_per_second": 771.08,
|
115 |
+
"eval_steps_per_second": 3.053,
|
116 |
+
"step": 1024
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 8.99,
|
120 |
+
"eval_accuracy": 0.9895556851133034,
|
121 |
+
"eval_f1": 0.988807816838561,
|
122 |
+
"eval_loss": 0.03866518661379814,
|
123 |
+
"eval_precision": 0.9888058514867228,
|
124 |
+
"eval_recall": 0.9888097821982119,
|
125 |
+
"eval_runtime": 19.63,
|
126 |
+
"eval_samples_per_second": 746.255,
|
127 |
+
"eval_steps_per_second": 2.955,
|
128 |
+
"step": 1152
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 9.99,
|
132 |
+
"eval_accuracy": 0.9897513002654229,
|
133 |
+
"eval_f1": 0.9889666056460926,
|
134 |
+
"eval_loss": 0.04022372514009476,
|
135 |
+
"eval_precision": 0.9889842973563904,
|
136 |
+
"eval_recall": 0.9889489145687492,
|
137 |
+
"eval_runtime": 17.8198,
|
138 |
+
"eval_samples_per_second": 822.064,
|
139 |
+
"eval_steps_per_second": 3.255,
|
140 |
+
"step": 1280
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 10.99,
|
144 |
+
"eval_accuracy": 0.9897282867181147,
|
145 |
+
"eval_f1": 0.9889296106084937,
|
146 |
+
"eval_loss": 0.04293292760848999,
|
147 |
+
"eval_precision": 0.9888785102450464,
|
148 |
+
"eval_recall": 0.9889807162534435,
|
149 |
+
"eval_runtime": 18.5105,
|
150 |
+
"eval_samples_per_second": 791.389,
|
151 |
+
"eval_steps_per_second": 3.133,
|
152 |
+
"step": 1408
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 11.71,
|
156 |
+
"learning_rate": 3.917748917748918e-05,
|
157 |
+
"loss": 0.0128,
|
158 |
+
"step": 1500
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 11.99,
|
162 |
+
"eval_accuracy": 0.989628561346446,
|
163 |
+
"eval_f1": 0.9888770954828604,
|
164 |
+
"eval_loss": 0.045427996665239334,
|
165 |
+
"eval_precision": 0.9889006825762183,
|
166 |
+
"eval_recall": 0.9888535095146666,
|
167 |
+
"eval_runtime": 18.3742,
|
168 |
+
"eval_samples_per_second": 797.257,
|
169 |
+
"eval_steps_per_second": 3.157,
|
170 |
+
"step": 1536
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 12.99,
|
174 |
+
"eval_accuracy": 0.9896899308059345,
|
175 |
+
"eval_f1": 0.9889251953792704,
|
176 |
+
"eval_loss": 0.04608777165412903,
|
177 |
+
"eval_precision": 0.9889134021028363,
|
178 |
+
"eval_recall": 0.9889369889369889,
|
179 |
+
"eval_runtime": 18.3253,
|
180 |
+
"eval_samples_per_second": 799.387,
|
181 |
+
"eval_steps_per_second": 3.165,
|
182 |
+
"step": 1664
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 13.99,
|
186 |
+
"eval_accuracy": 0.989889381549272,
|
187 |
+
"eval_f1": 0.9891329626839416,
|
188 |
+
"eval_loss": 0.04769197106361389,
|
189 |
+
"eval_precision": 0.9892057156034064,
|
190 |
+
"eval_recall": 0.9890602204651792,
|
191 |
+
"eval_runtime": 18.8558,
|
192 |
+
"eval_samples_per_second": 776.896,
|
193 |
+
"eval_steps_per_second": 3.076,
|
194 |
+
"step": 1792
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 14.99,
|
198 |
+
"eval_accuracy": 0.9897743138127311,
|
199 |
+
"eval_f1": 0.9890247489724366,
|
200 |
+
"eval_loss": 0.0506986528635025,
|
201 |
+
"eval_precision": 0.9889972294324113,
|
202 |
+
"eval_recall": 0.9890522700440055,
|
203 |
+
"eval_runtime": 17.9307,
|
204 |
+
"eval_samples_per_second": 816.978,
|
205 |
+
"eval_steps_per_second": 3.235,
|
206 |
+
"step": 1920
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 15.62,
|
210 |
+
"learning_rate": 3.376623376623377e-05,
|
211 |
+
"loss": 0.0069,
|
212 |
+
"step": 2000
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 15.99,
|
216 |
+
"eval_accuracy": 0.9900581475628654,
|
217 |
+
"eval_f1": 0.9893163454944793,
|
218 |
+
"eval_loss": 0.05137912556529045,
|
219 |
+
"eval_precision": 0.9893419096308429,
|
220 |
+
"eval_recall": 0.9892907826792124,
|
221 |
+
"eval_runtime": 18.9861,
|
222 |
+
"eval_samples_per_second": 771.564,
|
223 |
+
"eval_steps_per_second": 3.055,
|
224 |
+
"step": 2048
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 16.99,
|
228 |
+
"eval_accuracy": 0.989889381549272,
|
229 |
+
"eval_f1": 0.989197257872486,
|
230 |
+
"eval_loss": 0.053016748279333115,
|
231 |
+
"eval_precision": 0.9892070887364145,
|
232 |
+
"eval_recall": 0.9891874272039561,
|
233 |
+
"eval_runtime": 18.1987,
|
234 |
+
"eval_samples_per_second": 804.946,
|
235 |
+
"eval_steps_per_second": 3.187,
|
236 |
+
"step": 2176
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 17.99,
|
240 |
+
"eval_accuracy": 0.9898203409073475,
|
241 |
+
"eval_f1": 0.9890543664272952,
|
242 |
+
"eval_loss": 0.05524001270532608,
|
243 |
+
"eval_precision": 0.9890445373741871,
|
244 |
+
"eval_recall": 0.989064195675766,
|
245 |
+
"eval_runtime": 18.53,
|
246 |
+
"eval_samples_per_second": 790.554,
|
247 |
+
"eval_steps_per_second": 3.13,
|
248 |
+
"step": 2304
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 18.99,
|
252 |
+
"eval_accuracy": 0.9898395188634376,
|
253 |
+
"eval_f1": 0.9891659296212747,
|
254 |
+
"eval_loss": 0.0566512756049633,
|
255 |
+
"eval_precision": 0.9891325086653735,
|
256 |
+
"eval_recall": 0.9891993528357165,
|
257 |
+
"eval_runtime": 19.0959,
|
258 |
+
"eval_samples_per_second": 767.129,
|
259 |
+
"eval_steps_per_second": 3.037,
|
260 |
+
"step": 2432
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 19.53,
|
264 |
+
"learning_rate": 2.8354978354978357e-05,
|
265 |
+
"loss": 0.0037,
|
266 |
+
"step": 2500
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 19.99,
|
270 |
+
"eval_accuracy": 0.9899507510087605,
|
271 |
+
"eval_f1": 0.989249406222982,
|
272 |
+
"eval_loss": 0.057712409645318985,
|
273 |
+
"eval_precision": 0.9892159824466563,
|
274 |
+
"eval_recall": 0.9892828322580389,
|
275 |
+
"eval_runtime": 18.1495,
|
276 |
+
"eval_samples_per_second": 807.13,
|
277 |
+
"eval_steps_per_second": 3.196,
|
278 |
+
"step": 2560
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 20.99,
|
282 |
+
"eval_accuracy": 0.989897052731708,
|
283 |
+
"eval_f1": 0.9892537230374182,
|
284 |
+
"eval_loss": 0.05920035019516945,
|
285 |
+
"eval_precision": 0.9891888454322872,
|
286 |
+
"eval_recall": 0.9893186091533199,
|
287 |
+
"eval_runtime": 18.5483,
|
288 |
+
"eval_samples_per_second": 789.775,
|
289 |
+
"eval_steps_per_second": 3.127,
|
290 |
+
"step": 2688
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 21.99,
|
294 |
+
"eval_accuracy": 0.9899584221911966,
|
295 |
+
"eval_f1": 0.9892630842496084,
|
296 |
+
"eval_loss": 0.06059529632329941,
|
297 |
+
"eval_precision": 0.9892512869437322,
|
298 |
+
"eval_recall": 0.9892748818368653,
|
299 |
+
"eval_runtime": 18.2219,
|
300 |
+
"eval_samples_per_second": 803.923,
|
301 |
+
"eval_steps_per_second": 3.183,
|
302 |
+
"step": 2816
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 22.99,
|
306 |
+
"eval_accuracy": 0.9899699289648506,
|
307 |
+
"eval_f1": 0.9892710345759693,
|
308 |
+
"eval_loss": 0.06275586783885956,
|
309 |
+
"eval_precision": 0.9892592371752827,
|
310 |
+
"eval_recall": 0.9892828322580389,
|
311 |
+
"eval_runtime": 18.6724,
|
312 |
+
"eval_samples_per_second": 784.529,
|
313 |
+
"eval_steps_per_second": 3.106,
|
314 |
+
"step": 2944
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 23.43,
|
318 |
+
"learning_rate": 2.2943722943722946e-05,
|
319 |
+
"loss": 0.0023,
|
320 |
+
"step": 3000
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 23.99,
|
324 |
+
"eval_accuracy": 0.9899162306877982,
|
325 |
+
"eval_f1": 0.9891494254701287,
|
326 |
+
"eval_loss": 0.06293565034866333,
|
327 |
+
"eval_precision": 0.9891710528408098,
|
328 |
+
"eval_recall": 0.9891277990451545,
|
329 |
+
"eval_runtime": 18.198,
|
330 |
+
"eval_samples_per_second": 804.98,
|
331 |
+
"eval_steps_per_second": 3.187,
|
332 |
+
"step": 3072
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 24.99,
|
336 |
+
"eval_accuracy": 0.9899776001472868,
|
337 |
+
"eval_f1": 0.9892692816043408,
|
338 |
+
"eval_loss": 0.06246413290500641,
|
339 |
+
"eval_precision": 0.9892358571564855,
|
340 |
+
"eval_recall": 0.9893027083109728,
|
341 |
+
"eval_runtime": 18.2292,
|
342 |
+
"eval_samples_per_second": 803.601,
|
343 |
+
"eval_steps_per_second": 3.182,
|
344 |
+
"step": 3200
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 25.99,
|
348 |
+
"eval_accuracy": 0.990008284877031,
|
349 |
+
"eval_f1": 0.9893007845031315,
|
350 |
+
"eval_loss": 0.06362640857696533,
|
351 |
+
"eval_precision": 0.9892948855550521,
|
352 |
+
"eval_recall": 0.9893066835215596,
|
353 |
+
"eval_runtime": 19.3067,
|
354 |
+
"eval_samples_per_second": 758.751,
|
355 |
+
"eval_steps_per_second": 3.004,
|
356 |
+
"step": 3328
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 26.99,
|
360 |
+
"eval_accuracy": 0.9900926678838277,
|
361 |
+
"eval_f1": 0.9893981976538494,
|
362 |
+
"eval_loss": 0.0649913027882576,
|
363 |
+
"eval_precision": 0.9893903316465458,
|
364 |
+
"eval_recall": 0.9894060637862291,
|
365 |
+
"eval_runtime": 18.4146,
|
366 |
+
"eval_samples_per_second": 795.511,
|
367 |
+
"eval_steps_per_second": 3.15,
|
368 |
+
"step": 3456
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 27.34,
|
372 |
+
"learning_rate": 1.7532467532467535e-05,
|
373 |
+
"loss": 0.0017,
|
374 |
+
"step": 3500
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 27.99,
|
378 |
+
"eval_accuracy": 0.9901003390662637,
|
379 |
+
"eval_f1": 0.989384347826087,
|
380 |
+
"eval_loss": 0.0644073411822319,
|
381 |
+
"eval_precision": 0.9893705826701542,
|
382 |
+
"eval_recall": 0.9893981133650556,
|
383 |
+
"eval_runtime": 18.6787,
|
384 |
+
"eval_samples_per_second": 784.263,
|
385 |
+
"eval_steps_per_second": 3.105,
|
386 |
+
"step": 3584
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 28.99,
|
390 |
+
"eval_accuracy": 0.9901425305696621,
|
391 |
+
"eval_f1": 0.9894557748763214,
|
392 |
+
"eval_loss": 0.06558605283498764,
|
393 |
+
"eval_precision": 0.9894538082366036,
|
394 |
+
"eval_recall": 0.9894577415238572,
|
395 |
+
"eval_runtime": 18.1086,
|
396 |
+
"eval_samples_per_second": 808.954,
|
397 |
+
"eval_steps_per_second": 3.203,
|
398 |
+
"step": 3712
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 29.99,
|
402 |
+
"eval_accuracy": 0.9901502017520981,
|
403 |
+
"eval_f1": 0.9894956104173334,
|
404 |
+
"eval_loss": 0.0667632669210434,
|
405 |
+
"eval_precision": 0.989485776979218,
|
406 |
+
"eval_recall": 0.9895054440508986,
|
407 |
+
"eval_runtime": 18.5261,
|
408 |
+
"eval_samples_per_second": 790.723,
|
409 |
+
"eval_steps_per_second": 3.131,
|
410 |
+
"step": 3840
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 30.99,
|
414 |
+
"eval_accuracy": 0.9901003390662637,
|
415 |
+
"eval_f1": 0.9894474469341146,
|
416 |
+
"eval_loss": 0.06663960218429565,
|
417 |
+
"eval_precision": 0.9894808819203155,
|
418 |
+
"eval_recall": 0.9894140142074026,
|
419 |
+
"eval_runtime": 18.0695,
|
420 |
+
"eval_samples_per_second": 810.702,
|
421 |
+
"eval_steps_per_second": 3.21,
|
422 |
+
"step": 3968
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 31.25,
|
426 |
+
"learning_rate": 1.2121212121212122e-05,
|
427 |
+
"loss": 0.0011,
|
428 |
+
"step": 4000
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 31.99,
|
432 |
+
"eval_accuracy": 0.9900466407892112,
|
433 |
+
"eval_f1": 0.9893740508996081,
|
434 |
+
"eval_loss": 0.06780469417572021,
|
435 |
+
"eval_precision": 0.9893937165323654,
|
436 |
+
"eval_recall": 0.9893543860486009,
|
437 |
+
"eval_runtime": 18.1642,
|
438 |
+
"eval_samples_per_second": 806.478,
|
439 |
+
"eval_steps_per_second": 3.193,
|
440 |
+
"step": 4096
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"epoch": 32.99,
|
444 |
+
"eval_accuracy": 0.9902230779852407,
|
445 |
+
"eval_f1": 0.9895929814239887,
|
446 |
+
"eval_loss": 0.06849976629018784,
|
447 |
+
"eval_precision": 0.9895851138680967,
|
448 |
+
"eval_recall": 0.9896008491049814,
|
449 |
+
"eval_runtime": 18.9151,
|
450 |
+
"eval_samples_per_second": 774.46,
|
451 |
+
"eval_steps_per_second": 3.066,
|
452 |
+
"step": 4224
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 33.99,
|
456 |
+
"eval_accuracy": 0.99014636616088,
|
457 |
+
"eval_f1": 0.9894398320867711,
|
458 |
+
"eval_loss": 0.06920044124126434,
|
459 |
+
"eval_precision": 0.9894417987104366,
|
460 |
+
"eval_recall": 0.9894378654709233,
|
461 |
+
"eval_runtime": 18.3423,
|
462 |
+
"eval_samples_per_second": 798.645,
|
463 |
+
"eval_steps_per_second": 3.162,
|
464 |
+
"step": 4352
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 34.99,
|
468 |
+
"eval_accuracy": 0.9902000644379325,
|
469 |
+
"eval_f1": 0.9895391709648887,
|
470 |
+
"eval_loss": 0.06976373493671417,
|
471 |
+
"eval_precision": 0.9895450714751387,
|
472 |
+
"eval_recall": 0.9895332705250061,
|
473 |
+
"eval_runtime": 18.8004,
|
474 |
+
"eval_samples_per_second": 779.185,
|
475 |
+
"eval_steps_per_second": 3.085,
|
476 |
+
"step": 4480
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 35.16,
|
480 |
+
"learning_rate": 6.709956709956711e-06,
|
481 |
+
"loss": 0.0009,
|
482 |
+
"step": 4500
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 35.99,
|
486 |
+
"eval_accuracy": 0.9900658187453014,
|
487 |
+
"eval_f1": 0.9893825501754999,
|
488 |
+
"eval_loss": 0.06981877237558365,
|
489 |
+
"eval_precision": 0.9893510881446884,
|
490 |
+
"eval_recall": 0.9894140142074026,
|
491 |
+
"eval_runtime": 18.1896,
|
492 |
+
"eval_samples_per_second": 805.351,
|
493 |
+
"eval_steps_per_second": 3.189,
|
494 |
+
"step": 4608
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 36.99,
|
498 |
+
"eval_accuracy": 0.9902039000291505,
|
499 |
+
"eval_f1": 0.9894797097330076,
|
500 |
+
"eval_loss": 0.0695314109325409,
|
501 |
+
"eval_precision": 0.9894698764529106,
|
502 |
+
"eval_recall": 0.9894895432085514,
|
503 |
+
"eval_runtime": 18.7061,
|
504 |
+
"eval_samples_per_second": 783.113,
|
505 |
+
"eval_steps_per_second": 3.101,
|
506 |
+
"step": 4736
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 37.99,
|
510 |
+
"eval_accuracy": 0.9901732152994063,
|
511 |
+
"eval_f1": 0.9894400419774727,
|
512 |
+
"eval_loss": 0.06961216777563095,
|
513 |
+
"eval_precision": 0.9894223430643007,
|
514 |
+
"eval_recall": 0.9894577415238572,
|
515 |
+
"eval_runtime": 18.6705,
|
516 |
+
"eval_samples_per_second": 784.607,
|
517 |
+
"eval_steps_per_second": 3.107,
|
518 |
+
"step": 4864
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 38.99,
|
522 |
+
"eval_accuracy": 0.9901962288467144,
|
523 |
+
"eval_f1": 0.9894779103694458,
|
524 |
+
"eval_loss": 0.06985215842723846,
|
525 |
+
"eval_precision": 0.9894503782202383,
|
526 |
+
"eval_recall": 0.9895054440508986,
|
527 |
+
"eval_runtime": 18.2919,
|
528 |
+
"eval_samples_per_second": 800.846,
|
529 |
+
"eval_steps_per_second": 3.171,
|
530 |
+
"step": 4992
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 39.06,
|
534 |
+
"learning_rate": 1.2987012987012988e-06,
|
535 |
+
"loss": 0.0007,
|
536 |
+
"step": 5000
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 39.99,
|
540 |
+
"eval_accuracy": 0.990138694978444,
|
541 |
+
"eval_f1": 0.9894261920378432,
|
542 |
+
"eval_loss": 0.06969785690307617,
|
543 |
+
"eval_precision": 0.9894025940986839,
|
544 |
+
"eval_recall": 0.9894497911026837,
|
545 |
+
"eval_runtime": 18.675,
|
546 |
+
"eval_samples_per_second": 784.419,
|
547 |
+
"eval_steps_per_second": 3.106,
|
548 |
+
"step": 5120
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 39.99,
|
552 |
+
"step": 5120,
|
553 |
+
"total_flos": 2.72643266432467e+17,
|
554 |
+
"train_loss": 0.07192220802244265,
|
555 |
+
"train_runtime": 4057.7347,
|
556 |
+
"train_samples_per_second": 1299.572,
|
557 |
+
"train_steps_per_second": 1.262
|
558 |
+
}
|
559 |
+
],
|
560 |
+
"max_steps": 5120,
|
561 |
+
"num_train_epochs": 40,
|
562 |
+
"total_flos": 2.72643266432467e+17,
|
563 |
+
"trial_name": null,
|
564 |
+
"trial_params": null
|
565 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83ef6dcd651fd93358c9bef18839cad5184cd6bdf5d92b85da1278d4445f323b
|
3 |
+
size 3439
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|