pos_final_xlm_de

This model is a fine-tuned version of xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0580
  • Precision: 0.9895
  • Recall: 0.9894
  • F1: 0.9894
  • Accuracy: 0.9901

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 1024
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 40.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.99 128 0.3828 0.9159 0.9106 0.9133 0.9196
No log 1.99 256 0.0659 0.9810 0.9812 0.9811 0.9824
No log 2.99 384 0.0447 0.9857 0.9857 0.9857 0.9865
0.7525 3.99 512 0.0388 0.9870 0.9871 0.9871 0.9878
0.7525 4.99 640 0.0373 0.9871 0.9875 0.9873 0.9881
0.7525 5.99 768 0.0354 0.9880 0.9882 0.9881 0.9889
0.7525 6.99 896 0.0350 0.9883 0.9885 0.9884 0.9891
0.0318 7.99 1024 0.0354 0.9884 0.9886 0.9885 0.9891
0.0318 8.99 1152 0.0356 0.9888 0.9888 0.9888 0.9894
0.0318 9.99 1280 0.0367 0.9888 0.9889 0.9888 0.9895
0.0318 10.99 1408 0.0370 0.9887 0.9888 0.9887 0.9894
0.0205 11.99 1536 0.0370 0.9889 0.9891 0.9890 0.9896
0.0205 12.99 1664 0.0388 0.9888 0.9889 0.9888 0.9895
0.0205 13.99 1792 0.0397 0.9890 0.9891 0.9890 0.9897
0.0205 14.99 1920 0.0403 0.9891 0.9891 0.9891 0.9897
0.0146 15.99 2048 0.0413 0.9891 0.9891 0.9891 0.9897
0.0146 16.99 2176 0.0423 0.9891 0.9891 0.9891 0.9898
0.0146 17.99 2304 0.0429 0.9891 0.9891 0.9891 0.9897
0.0146 18.99 2432 0.0443 0.9893 0.9894 0.9893 0.9899
0.0103 19.99 2560 0.0457 0.9890 0.9889 0.9890 0.9896
0.0103 20.99 2688 0.0455 0.9891 0.9892 0.9891 0.9898
0.0103 21.99 2816 0.0468 0.9891 0.9892 0.9891 0.9898
0.0103 22.99 2944 0.0491 0.9891 0.9892 0.9892 0.9898
0.0073 23.99 3072 0.0495 0.9894 0.9894 0.9894 0.9900
0.0073 24.99 3200 0.0503 0.9892 0.9892 0.9892 0.9898
0.0073 25.99 3328 0.0519 0.9892 0.9892 0.9892 0.9898
0.0073 26.99 3456 0.0522 0.9892 0.9893 0.9892 0.9899
0.0052 27.99 3584 0.0526 0.9892 0.9892 0.9892 0.9899
0.0052 28.99 3712 0.0535 0.9892 0.9892 0.9892 0.9899
0.0052 29.99 3840 0.0544 0.9894 0.9894 0.9894 0.9900
0.0052 30.99 3968 0.0548 0.9893 0.9894 0.9894 0.9900
0.0038 31.99 4096 0.0563 0.9892 0.9892 0.9892 0.9899
0.0038 32.99 4224 0.0562 0.9894 0.9894 0.9894 0.9900
0.0038 33.99 4352 0.0577 0.9891 0.9892 0.9892 0.9898
0.0038 34.99 4480 0.0580 0.9895 0.9894 0.9894 0.9901
0.003 35.99 4608 0.0581 0.9893 0.9894 0.9894 0.9900
0.003 36.99 4736 0.0585 0.9893 0.9893 0.9893 0.9899
0.003 37.99 4864 0.0586 0.9893 0.9894 0.9893 0.9900
0.003 38.99 4992 0.0588 0.9893 0.9894 0.9894 0.9900
0.0024 39.99 5120 0.0589 0.9894 0.9894 0.9894 0.9900

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.12.0
  • Datasets 2.18.0
  • Tokenizers 0.13.2
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including pranaydeeps/lettuce_pos_de_xlm