File size: 5,221 Bytes
42e474d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
---
license: mit
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: pos_final_mono_fr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pos_final_mono_fr
This model is a fine-tuned version of [almanach/camembert-base](https://huggingface.co/almanach/camembert-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5416
- Precision: 0.9742
- Recall: 0.9745
- F1: 0.9743
- Accuracy: 0.9768
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 1024
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 40.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 0.95 | 14 | 3.6697 | 0.0210 | 0.0194 | 0.0201 | 0.0215 |
| No log | 1.95 | 28 | 3.6329 | 0.0513 | 0.0484 | 0.0498 | 0.0511 |
| No log | 2.95 | 42 | 3.5739 | 0.1142 | 0.1086 | 0.1113 | 0.1267 |
| No log | 3.95 | 56 | 3.4791 | 0.2535 | 0.1976 | 0.2221 | 0.3061 |
| No log | 4.95 | 70 | 3.3377 | 0.3393 | 0.2029 | 0.2539 | 0.3788 |
| No log | 5.95 | 84 | 3.1886 | 0.3737 | 0.1401 | 0.2038 | 0.3427 |
| No log | 6.95 | 98 | 3.0505 | 0.4342 | 0.3211 | 0.3692 | 0.4600 |
| No log | 7.95 | 112 | 2.8996 | 0.5160 | 0.4319 | 0.4702 | 0.5282 |
| No log | 8.95 | 126 | 2.7485 | 0.5617 | 0.4878 | 0.5222 | 0.5732 |
| No log | 9.95 | 140 | 2.5862 | 0.6077 | 0.5374 | 0.5704 | 0.6246 |
| No log | 10.95 | 154 | 2.4205 | 0.6805 | 0.6311 | 0.6549 | 0.6887 |
| No log | 11.95 | 168 | 2.2603 | 0.7816 | 0.7569 | 0.7691 | 0.7839 |
| No log | 12.95 | 182 | 2.1124 | 0.8366 | 0.8305 | 0.8335 | 0.8370 |
| No log | 13.95 | 196 | 1.9826 | 0.8691 | 0.8681 | 0.8686 | 0.8736 |
| No log | 14.95 | 210 | 1.8721 | 0.9210 | 0.92 | 0.9205 | 0.9240 |
| No log | 15.95 | 224 | 1.7779 | 0.9390 | 0.9392 | 0.9391 | 0.9417 |
| No log | 16.95 | 238 | 1.6986 | 0.9442 | 0.9452 | 0.9447 | 0.9466 |
| No log | 17.95 | 252 | 1.6294 | 0.9467 | 0.9476 | 0.9472 | 0.9486 |
| No log | 18.95 | 266 | 1.5667 | 0.9481 | 0.9493 | 0.9487 | 0.9499 |
| No log | 19.95 | 280 | 1.5073 | 0.9507 | 0.9522 | 0.9514 | 0.9523 |
| No log | 20.95 | 294 | 1.4499 | 0.9538 | 0.9550 | 0.9544 | 0.9552 |
| No log | 21.95 | 308 | 1.3926 | 0.9555 | 0.9563 | 0.9559 | 0.9563 |
| No log | 22.95 | 322 | 1.3373 | 0.9609 | 0.9614 | 0.9612 | 0.9612 |
| No log | 23.95 | 336 | 1.2815 | 0.9622 | 0.9624 | 0.9623 | 0.9623 |
| No log | 24.95 | 350 | 1.2246 | 0.9649 | 0.9648 | 0.9648 | 0.9646 |
| No log | 25.95 | 364 | 1.1682 | 0.9653 | 0.9652 | 0.9652 | 0.9648 |
| No log | 26.95 | 378 | 1.1114 | 0.9650 | 0.9659 | 0.9654 | 0.9661 |
| No log | 27.95 | 392 | 1.0521 | 0.9669 | 0.9675 | 0.9672 | 0.9699 |
| No log | 28.95 | 406 | 0.9950 | 0.9677 | 0.9679 | 0.9678 | 0.9707 |
| No log | 29.95 | 420 | 0.9364 | 0.9687 | 0.9690 | 0.9688 | 0.9716 |
| No log | 30.95 | 434 | 0.8800 | 0.9691 | 0.9693 | 0.9692 | 0.9721 |
| No log | 31.95 | 448 | 0.8233 | 0.9693 | 0.9698 | 0.9696 | 0.9726 |
| No log | 32.95 | 462 | 0.7679 | 0.9703 | 0.9703 | 0.9703 | 0.9733 |
| No log | 33.95 | 476 | 0.7146 | 0.9711 | 0.9711 | 0.9711 | 0.9737 |
| No log | 34.95 | 490 | 0.6641 | 0.9722 | 0.9724 | 0.9723 | 0.9750 |
| 2.0937 | 35.95 | 504 | 0.6187 | 0.9729 | 0.9729 | 0.9729 | 0.9755 |
| 2.0937 | 36.95 | 518 | 0.5834 | 0.9727 | 0.9732 | 0.9729 | 0.9756 |
| 2.0937 | 37.95 | 532 | 0.5605 | 0.9735 | 0.9739 | 0.9737 | 0.9762 |
| 2.0937 | 38.95 | 546 | 0.5466 | 0.9737 | 0.9742 | 0.9739 | 0.9765 |
| 2.0937 | 39.95 | 560 | 0.5416 | 0.9742 | 0.9745 | 0.9743 | 0.9768 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.12.0
- Datasets 2.18.0
- Tokenizers 0.13.2
|