|
--- |
|
license: apache-2.0 |
|
base_model: bert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- anno_ctr |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: annoctr_bert_uncased |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: anno_ctr |
|
type: anno_ctr |
|
config: all_tags |
|
split: test |
|
args: all_tags |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.7928388746803069 |
|
- name: Recall |
|
type: recall |
|
value: 0.7809920945182869 |
|
- name: F1 |
|
type: f1 |
|
value: 0.7868708971553611 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.936522196415268 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# annoctr_bert_uncased |
|
|
|
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the anno_ctr dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3322 |
|
- Precision: 0.7928 |
|
- Recall: 0.7810 |
|
- F1: 0.7869 |
|
- Accuracy: 0.9365 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.54 | 1.0 | 474 | 0.3452 | 0.6983 | 0.6601 | 0.6786 | 0.9137 | |
|
| 0.3013 | 2.0 | 948 | 0.3466 | 0.7774 | 0.7018 | 0.7376 | 0.9240 | |
|
| 0.0392 | 3.0 | 1422 | 0.3071 | 0.7851 | 0.7517 | 0.7680 | 0.9303 | |
|
| 0.5695 | 4.0 | 1896 | 0.2941 | 0.7810 | 0.7617 | 0.7712 | 0.9334 | |
|
| 0.0021 | 5.0 | 2370 | 0.3109 | 0.7928 | 0.7720 | 0.7823 | 0.9351 | |
|
| 0.0419 | 6.0 | 2844 | 0.3020 | 0.7772 | 0.7796 | 0.7784 | 0.9341 | |
|
| 0.2979 | 7.0 | 3318 | 0.3169 | 0.8019 | 0.7814 | 0.7915 | 0.9374 | |
|
| 0.0017 | 8.0 | 3792 | 0.3260 | 0.7972 | 0.7778 | 0.7874 | 0.9365 | |
|
| 0.0166 | 9.0 | 4266 | 0.3349 | 0.7935 | 0.7789 | 0.7861 | 0.9364 | |
|
| 0.0685 | 10.0 | 4740 | 0.3322 | 0.7928 | 0.7810 | 0.7869 | 0.9365 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.1 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|