Adding Evaluation Results
#1
by
leaderboard-pr-bot
- opened
README.md
CHANGED
@@ -1,5 +1,100 @@
|
|
1 |
---
|
2 |
license: llama3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
# princeton_nlp/Llama-3-8B-ProLong-64k-Base
|
5 |
|
@@ -220,4 +315,17 @@ We conduct supervised fine-tuning (SFT) on our base long-context model. In our p
|
|
220 |
| Scheduling | 5% warmup, cosine decay till 10% peak learning rate |
|
221 |
| Total #tokens | 1B |
|
222 |
|
223 |
-
- Synthetic data: we also experiment with several strategies to generate long, synthetic chat data, but they have not yet helped to improve upon our UltraChat-fine-tuned chat models. The synthetic data strategies we tried include (1) using a paragraph of a long book/repo to generate question-answer pairs; (2) using hierarchical methods to summarize a long book; (3) turning the previous synthetic long QA data into a RAG format.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: llama3
|
3 |
+
model-index:
|
4 |
+
- name: Llama-3-8B-ProLong-64k-Base
|
5 |
+
results:
|
6 |
+
- task:
|
7 |
+
type: text-generation
|
8 |
+
name: Text Generation
|
9 |
+
dataset:
|
10 |
+
name: IFEval (0-Shot)
|
11 |
+
type: HuggingFaceH4/ifeval
|
12 |
+
args:
|
13 |
+
num_few_shot: 0
|
14 |
+
metrics:
|
15 |
+
- type: inst_level_strict_acc and prompt_level_strict_acc
|
16 |
+
value: 12.49
|
17 |
+
name: strict accuracy
|
18 |
+
source:
|
19 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=princeton-nlp/Llama-3-8B-ProLong-64k-Base
|
20 |
+
name: Open LLM Leaderboard
|
21 |
+
- task:
|
22 |
+
type: text-generation
|
23 |
+
name: Text Generation
|
24 |
+
dataset:
|
25 |
+
name: BBH (3-Shot)
|
26 |
+
type: BBH
|
27 |
+
args:
|
28 |
+
num_few_shot: 3
|
29 |
+
metrics:
|
30 |
+
- type: acc_norm
|
31 |
+
value: 25.02
|
32 |
+
name: normalized accuracy
|
33 |
+
source:
|
34 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=princeton-nlp/Llama-3-8B-ProLong-64k-Base
|
35 |
+
name: Open LLM Leaderboard
|
36 |
+
- task:
|
37 |
+
type: text-generation
|
38 |
+
name: Text Generation
|
39 |
+
dataset:
|
40 |
+
name: MATH Lvl 5 (4-Shot)
|
41 |
+
type: hendrycks/competition_math
|
42 |
+
args:
|
43 |
+
num_few_shot: 4
|
44 |
+
metrics:
|
45 |
+
- type: exact_match
|
46 |
+
value: 5.82
|
47 |
+
name: exact match
|
48 |
+
source:
|
49 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=princeton-nlp/Llama-3-8B-ProLong-64k-Base
|
50 |
+
name: Open LLM Leaderboard
|
51 |
+
- task:
|
52 |
+
type: text-generation
|
53 |
+
name: Text Generation
|
54 |
+
dataset:
|
55 |
+
name: GPQA (0-shot)
|
56 |
+
type: Idavidrein/gpqa
|
57 |
+
args:
|
58 |
+
num_few_shot: 0
|
59 |
+
metrics:
|
60 |
+
- type: acc_norm
|
61 |
+
value: 4.81
|
62 |
+
name: acc_norm
|
63 |
+
source:
|
64 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=princeton-nlp/Llama-3-8B-ProLong-64k-Base
|
65 |
+
name: Open LLM Leaderboard
|
66 |
+
- task:
|
67 |
+
type: text-generation
|
68 |
+
name: Text Generation
|
69 |
+
dataset:
|
70 |
+
name: MuSR (0-shot)
|
71 |
+
type: TAUR-Lab/MuSR
|
72 |
+
args:
|
73 |
+
num_few_shot: 0
|
74 |
+
metrics:
|
75 |
+
- type: acc_norm
|
76 |
+
value: 9.1
|
77 |
+
name: acc_norm
|
78 |
+
source:
|
79 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=princeton-nlp/Llama-3-8B-ProLong-64k-Base
|
80 |
+
name: Open LLM Leaderboard
|
81 |
+
- task:
|
82 |
+
type: text-generation
|
83 |
+
name: Text Generation
|
84 |
+
dataset:
|
85 |
+
name: MMLU-PRO (5-shot)
|
86 |
+
type: TIGER-Lab/MMLU-Pro
|
87 |
+
config: main
|
88 |
+
split: test
|
89 |
+
args:
|
90 |
+
num_few_shot: 5
|
91 |
+
metrics:
|
92 |
+
- type: acc
|
93 |
+
value: 25.4
|
94 |
+
name: accuracy
|
95 |
+
source:
|
96 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=princeton-nlp/Llama-3-8B-ProLong-64k-Base
|
97 |
+
name: Open LLM Leaderboard
|
98 |
---
|
99 |
# princeton_nlp/Llama-3-8B-ProLong-64k-Base
|
100 |
|
|
|
315 |
| Scheduling | 5% warmup, cosine decay till 10% peak learning rate |
|
316 |
| Total #tokens | 1B |
|
317 |
|
318 |
+
- Synthetic data: we also experiment with several strategies to generate long, synthetic chat data, but they have not yet helped to improve upon our UltraChat-fine-tuned chat models. The synthetic data strategies we tried include (1) using a paragraph of a long book/repo to generate question-answer pairs; (2) using hierarchical methods to summarize a long book; (3) turning the previous synthetic long QA data into a RAG format.
|
319 |
+
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
|
320 |
+
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_princeton-nlp__Llama-3-8B-ProLong-64k-Base)
|
321 |
+
|
322 |
+
| Metric |Value|
|
323 |
+
|-------------------|----:|
|
324 |
+
|Avg. |13.77|
|
325 |
+
|IFEval (0-Shot) |12.49|
|
326 |
+
|BBH (3-Shot) |25.02|
|
327 |
+
|MATH Lvl 5 (4-Shot)| 5.82|
|
328 |
+
|GPQA (0-shot) | 4.81|
|
329 |
+
|MuSR (0-shot) | 9.10|
|
330 |
+
|MMLU-PRO (5-shot) |25.40|
|
331 |
+
|