metadata
license: apache-2.0
tags:
- unsloth
- trl
- sft
datasets:
- prismdata/KDI-DATASET
base_model:
- beomi/Llama-3-Open-Ko-8B-Instruct-preview
Inference sample Code
from transformers import AutoTokenizer
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("prismdata/KDI-Llama-3-Open-Ko-8B-Instruct",cache_dir="./", device_map = 'cuda')
tokenizer = AutoTokenizer.from_pretrained("prismdata/KDI-Llama-3-Open-Ko-8B-Instruct",cache_dir="./", device_map = 'cuda')
prompt_template = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\nHuman: {prompt}\nAssistant:\n"
text = 'PMDU(prime ministerโs delivery unit)๊ฐ ์ด๋ค ์ญํ ์ ํ๋ ์กฐ์ง์ธ๊ฐ์?'
model_inputs = tokenizer(prompt_template.format(prompt=text), return_tensors='pt').to("cuda:0")
outputs = model.generate(**model_inputs, max_new_tokens=256).to("cuda:0")
output_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
print(output_text)
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
Human: PMDU(prime ministerโs delivery unit)๊ฐ ์ด๋ค ์ญํ ์ ํ๋ ์กฐ์ง์ธ๊ฐ์?
Assistant:
PMDU๋ ์ด๋ฆฌ์ค ์ฐํ์ ์๋ ์กฐ์ง์ผ๋ก, ์ ์ฑ
ํจ๊ณผ์ฑ ์ฆ๋๋ฅผ ์ํ ์งํ๊ณผํ์ ๊ดํ ์ฐ๊ตฌ์์ ์ด๋ฆฌ์ค์ ์ ์ฑ
์กฐ์ ๊ณผ ์งํ์ ์ง์ํ๋ ์ญํ ์ ํฉ๋๋ค.