Edit model card

swinv2-tiny-patch4-window8-256-finetuned_swinv2tiny-autotags-256

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1115
  • Accuracy: 0.9655

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.6169 0.99 61 1.1018 0.6701
0.7747 1.99 122 0.4571 0.8670
0.6088 2.99 183 0.3002 0.9198
0.3908 3.99 244 0.2334 0.9299
0.399 4.99 305 0.2138 0.9320
0.2969 5.99 366 0.1650 0.9492
0.2743 6.99 427 0.1514 0.9533
0.2947 7.99 488 0.1428 0.9513
0.2304 8.99 549 0.1541 0.9523
0.1957 9.99 610 0.1256 0.9604
0.1645 10.99 671 0.1138 0.9645
0.2317 11.99 732 0.1140 0.9655
0.1001 12.99 793 0.1068 0.9706
0.1564 13.99 854 0.1119 0.9675
0.1386 14.99 915 0.1115 0.9655

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.10.2+cu113
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results