priyankloco commited on
Commit
f9c5d00
1 Parent(s): 4529342

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -0
README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: swinv2-tiny-patch4-window8-256-finetuned_swinv2tiny-autotags-256
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ config: default
19
+ split: train
20
+ args: default
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.965482233502538
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # swinv2-tiny-patch4-window8-256-finetuned_swinv2tiny-autotags-256
31
+
32
+ This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.1115
35
+ - Accuracy: 0.9655
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
+ - train_batch_size: 16
56
+ - eval_batch_size: 16
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 4
59
+ - total_train_batch_size: 64
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 15
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 1.6169 | 0.99 | 61 | 1.1018 | 0.6701 |
70
+ | 0.7747 | 1.99 | 122 | 0.4571 | 0.8670 |
71
+ | 0.6088 | 2.99 | 183 | 0.3002 | 0.9198 |
72
+ | 0.3908 | 3.99 | 244 | 0.2334 | 0.9299 |
73
+ | 0.399 | 4.99 | 305 | 0.2138 | 0.9320 |
74
+ | 0.2969 | 5.99 | 366 | 0.1650 | 0.9492 |
75
+ | 0.2743 | 6.99 | 427 | 0.1514 | 0.9533 |
76
+ | 0.2947 | 7.99 | 488 | 0.1428 | 0.9513 |
77
+ | 0.2304 | 8.99 | 549 | 0.1541 | 0.9523 |
78
+ | 0.1957 | 9.99 | 610 | 0.1256 | 0.9604 |
79
+ | 0.1645 | 10.99 | 671 | 0.1138 | 0.9645 |
80
+ | 0.2317 | 11.99 | 732 | 0.1140 | 0.9655 |
81
+ | 0.1001 | 12.99 | 793 | 0.1068 | 0.9706 |
82
+ | 0.1564 | 13.99 | 854 | 0.1119 | 0.9675 |
83
+ | 0.1386 | 14.99 | 915 | 0.1115 | 0.9655 |
84
+
85
+
86
+ ### Framework versions
87
+
88
+ - Transformers 4.25.1
89
+ - Pytorch 1.10.2+cu113
90
+ - Datasets 2.10.1
91
+ - Tokenizers 0.13.2