metadata
language:
- ca
tags:
- catalan
- text classification
- tecla
- CaText
- Catalan Textual Corpus
datasets:
- projecte-aina/tecla
metrics:
- accuracy
model-index:
- name: roberta-base-ca-cased-tc
results:
- task:
type: text-classification
dataset:
name: tecla
type: projecte-aina/tecla
metrics:
- name: Accuracy
type: accuracy
value: 0.740388810634613
widget:
- text: Els Pets presenten el seu nou treball al Palau Sant Jordi.
- text: >-
Els barcelonins incrementen un 23% l’ús del cotxe des de l’inici de la
pandèmia.
- text: >-
Retards a quatre línies de Rodalies per una avaria entre Sants i plaça de
Catalunya.
- text: >-
Majors de 60 anys i sanitaris començaran a rebre la tercera dosi de la
vacuna covid els propers dies.
- text: Els cinemes Verdi estrenen Verdi Classics, un nou canal de televisió.
Catalan BERTa (RoBERTa-base) finetuned for Text Classification.
The roberta-base-ca-cased-tc is a Text Classification (TC) model for the Catalan language fine-tuned from the BERTa model, a RoBERTa base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the BERTa model card for more details).
Datasets
We used the TC dataset in Catalan called TeCla for training and evaluation.
Evaluation and results
We evaluated the roberta-base-ca-cased-tc on the TeCla test set against standard multilingual and monolingual baselines:
Model | TeCla (accuracy) |
---|---|
roberta-base-ca-cased-tc | 74.04 |
mBERT | 70.56 |
XLM-RoBERTa | 71.68 |
WikiBERT-ca | 73.22 |
For more details, check the fine-tuning and evaluation scripts in the official GitHub repository.
Citing
If you use any of these resources (datasets or models) in your work, please cite our latest paper:
@inproceedings{armengol-estape-etal-2021-multilingual,
title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan",
author = "Armengol-Estap{\'e}, Jordi and
Carrino, Casimiro Pio and
Rodriguez-Penagos, Carlos and
de Gibert Bonet, Ona and
Armentano-Oller, Carme and
Gonzalez-Agirre, Aitor and
Melero, Maite and
Villegas, Marta",
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-acl.437",
doi = "10.18653/v1/2021.findings-acl.437",
pages = "4933--4946",
}