File size: 2,755 Bytes
d1a4c9e c1ca154 d1a4c9e f79f64e d1a4c9e 916d076 d1a4c9e 89875f3 d1a4c9e 89875f3 d1a4c9e 00d1b7c c1ca154 046dfb6 c1ca154 046dfb6 c1ca154 046dfb6 c1ca154 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
---
language:
- ca
license: ???
tags:
- "catalan"
- "textual entailment"
- "teca"
- "CaText"
- "Catalan Textual Corpus"
datasets:
- "projecte-aina/teca"
metrics:
- "accuracy"
model-index:
- name: roberta-base-ca-cased-te
results:
- task:
type: text-classification # Required. Example: automatic-speech-recognition
dataset:
type: projecte-aina/teca
name: teca
metrics:
- type: accuracy
value: 0.7912139892578125
widget:
- text: "<s> M'agrades.</s></s> T'estimo.</s>"
- text: "M'agrada el sol i la calor. A la Garrotxa plou molt."
- text: "El llibre va caure per la finestra. El llibre va sortir volant."
- text: "El meu aniversari és el 23 de maig. Faré anys a finals de maig."
---
# Catalan BERTa (RoBERTa-base) finetuned for Textual Entailment.
The **roberta-base-ca-cased-te** is a Textual Entailment (TE) model for the Catalan language fine-tuned from the [BERTa](https://huggingface.co/PlanTL-GOB-ES/roberta-base-ca) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the BERTa model card for more details).
## Datasets
We used the TE dataset in Catalan called [TECA](https://huggingface.co/datasets/projecte-aina/viquiquad) for training and evaluation.
## Evaluation and results
We evaluated the roberta-base-ca-cased-te on the TECA test set against standard multilingual and monolingual baselines:
| Model | TECA (accuracy) |
| ------------|:----|
| BERTa | 79.12 |
| mBERT | x |
| XLM-RoBERTa | x |
| WikiBERT-ca | x |
For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/berta).
## Citing
If you use any of these resources (datasets or models) in your work, please cite our latest paper:
```bibtex
@inproceedings{armengol-estape-etal-2021-multilingual,
title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan",
author = "Armengol-Estap{\'e}, Jordi and
Carrino, Casimiro Pio and
Rodriguez-Penagos, Carlos and
de Gibert Bonet, Ona and
Armentano-Oller, Carme and
Gonzalez-Agirre, Aitor and
Melero, Maite and
Villegas, Marta",
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-acl.437",
doi = "10.18653/v1/2021.findings-acl.437",
pages = "4933--4946",
}
```
## Funding
TODO
## Disclaimer
TODO
|