metadata
language:
- en
inference: false
pipeline_tag: token-classification
tags:
- ner
license: mit
datasets:
- conll2003
base_model: dbmdz/bert-large-cased-finetuned-conll03-english
ONNX version of dbmdz/bert-large-cased-finetuned-conll03-english
This model is a conversion of dbmdz/bert-large-cased-finetuned-conll03-english to ONNX format using the 🤗 Optimum library.
dbmdz/bert-large-cased-finetuned-conll03-english
is designed for named-entity recognition (NER), capable of finding person, organization, and other entities in the text.
Usage
Loading the model requires the 🤗 Optimum library installed.
from optimum.onnxruntime import ORTModelForTokenClassification
from transformers import AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained("laiyer/bert-large-cased-finetuned-conll03-english-onnx")
model = ORTModelForTokenClassification.from_pretrained("laiyer/bert-large-cased-finetuned-conll03-english-onnx")
ner = pipeline(
task="ner",
model=model,
tokenizer=tokenizer,
)
ner_output = ner("My name is John Doe.")
print(ner_output)
LLM Guard
Community
Join our Slack to give us feedback, connect with the maintainers and fellow users, ask questions, or engage in discussions about LLM security!