MiniLMv2-L6-H384_R-OCR-quality

This model is a fine-tuned version of pszemraj/MiniLMv2-L6-H384_R-fineweb-100k on pszemraj/OCR-quality-classification It achieves the following results on the evaluation set:

  • Loss: 0.0162
  • Accuracy: 0.996
  • Num Input Tokens Seen: 61536256

Intended uses & limitations

predict whether a document is clean or noisy

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Input Tokens Seen
0.0298 0.2660 250 0.0448 0.99 8192000
0.0141 0.5321 500 0.0330 0.99 16384000
0.02 0.7981 750 0.0298 0.99 24576000
0.0085 1.0641 1000 0.0222 0.994 32765952
0.0174 1.3301 1250 0.0207 0.994 40957952
0.0104 1.5962 1500 0.0202 0.996 49149952
0.0237 1.8622 1750 0.0185 0.996 57341952

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
25
Safetensors
Model size
30.3M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for pszemraj/MiniLMv2-L6-H384_R-OCR-quality

Finetuned
(1)
this model

Dataset used to train pszemraj/MiniLMv2-L6-H384_R-OCR-quality

Collection including pszemraj/MiniLMv2-L6-H384_R-OCR-quality