bert_uncased_L-4_H-128_A-2-OCR-quality-classification-cls

This model is a fine-tuned version of google/bert_uncased_L-4_H-128_A-2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0422
  • Accuracy: 0.99
  • Num Input Tokens Seen: 57341952

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.99) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Input Tokens Seen
0.1123 0.2660 250 0.1202 0.974 8192000
0.072 0.5321 500 0.0665 0.986 16384000
0.0404 0.7981 750 0.0464 0.988 24576000
0.0255 1.0641 1000 0.0428 0.99 32765952
0.0253 1.3301 1250 0.0357 0.99 40957952
0.0329 1.5962 1500 0.0438 0.986 49149952
0.0435 1.8622 1750 0.0422 0.99 57341952

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
23
Safetensors
Model size
4.78M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for pszemraj/bert-L-4_H-128_A-2-OCR-quality

Finetuned
(13)
this model

Collection including pszemraj/bert-L-4_H-128_A-2-OCR-quality