|
--- |
|
license: apache-2.0 |
|
tags: |
|
- jamba |
|
- smol MoE |
|
- smol |
|
metrics: |
|
- accuracy |
|
datasets: |
|
- BEE-spoke-data/knowledge-inoc-concat-v1 |
|
- BEE-spoke-data/wikipedia-20230901.en-deduped |
|
- BEE-spoke-data/fineweb-100k_en-med |
|
- BEE-spoke-data/fineweb-1M_en-med |
|
- BEE-spoke-data/fineweb-1M_longish |
|
language: |
|
- en |
|
inference: false |
|
--- |
|
|
|
# jamba-900M-v0.13-KIx2 |
|
|
|
<a href="https://colab.research.google.com/gist/pszemraj/62d037d0d93656ef2101d7e29e3b7220/jamba-test-sandbox.ipynb"> |
|
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> |
|
</a> |
|
|
|
> The API widget is off as it isn't supported by hf yet - try the Colab |
|
|
|
This is a pretraining experiment on the `jamba` arch as a "smol MoE". |
|
|
|
Details: |
|
|
|
- pretrained at context length 16384 |
|
- seen approx 20b tokens |
|
- uses Claude3 tokenizer (as hf GPT2 tokenizer) |
|
- hidden size 1024, 12 layers, 8 experts |
|
|
|
achieves the following results on the evaluation set (_most recent dataset_): |
|
- Loss: 3.0366 |
|
- Accuracy: 0.4514 |
|
- Num Input Tokens Seen: 1975517184 |
|
|
|
if I pretrain it further, other versions will be in new repos with incremented version (this is v0.13) |
|
|
|
## Quick eval |
|
|
|
Quick eval for: pszemraj/jamba-H1024_L12-v0.13-KIx2 |
|
|
|
|
|
hf (pretrained=pszemraj/jamba-H1024_L12-v0.13-KIx2,trust_remote_code=True,dtype=float), gen_kwargs: (None), limit: 0.9999, num_fewshot: None, batch_size: 8 |
|
|
|
| Tasks |Version|Filter|n-shot| Metric | Value | |Stderr| |
|
|--------------|------:|------|-----:|----------|-------:|---|-----:| |
|
|winogrande | 1|none | 0|acc | 0.5067|± |0.0141| |
|
|piqa | 1|none | 0|acc | 0.5912|± |0.0138| |
|
| | |none | 0|acc_norm | 0.5951|± |0.0138| |
|
|openbookqa | 1|none | 0|acc | 0.1800|± |0.0172| |
|
| | |none | 0|acc_norm | 0.2920|± |0.0204| |
|
|lambada_openai| 1|none | 0|perplexity|103.1241|± |8.5843| |
|
| | |none | 0|acc | 0.2502|± |0.0122| |
|
|boolq | 2|none | 0|acc | 0.6196|± |0.0136| |
|
|arc_easy | 1|none | 0|acc | 0.3836|± |0.0137| |
|
| | |none | 0|acc_norm | 0.3694|± |0.0136| |
|
|
|
## example outputs |
|
|
|
|
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/60bccec062080d33f875cd0c/wky-qjUtS0AJ6YtIsJh3T.png) |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 80085 |
|
- gradient_accumulation_steps: 32 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- num_epochs: 2.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Input Tokens Seen | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:-----------------:| |
|
| 3.2013 | 0.4241 | 200 | 3.0653 | 0.4479 | 419430400 | |
|
| 3.1976 | 0.8481 | 400 | 3.0434 | 0.4506 | 838860800 | |
|
| 3.1485 | 1.2722 | 600 | 3.0375 | 0.4513 | 1258291200 | |
|
| 3.1871 | 1.6963 | 800 | 3.0366 | 0.4514 | 1677721600 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.1 |
|
- Pytorch 2.2.0+cu121 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.19.1 |