pszemraj's picture
Update README.md
ffb78a7 verified
---
license: apache-2.0
tags:
- jamba
- smol MoE
- smol
metrics:
- accuracy
datasets:
- BEE-spoke-data/knowledge-inoc-concat-v1
- BEE-spoke-data/wikipedia-20230901.en-deduped
- BEE-spoke-data/fineweb-100k_en-med
- BEE-spoke-data/fineweb-1M_en-med
- BEE-spoke-data/fineweb-1M_longish
language:
- en
inference: false
---
# jamba-900M-v0.13-KIx2
<a href="https://colab.research.google.com/gist/pszemraj/62d037d0d93656ef2101d7e29e3b7220/jamba-test-sandbox.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>
> The API widget is off as it isn't supported by hf yet - try the Colab
This is a pretraining experiment on the `jamba` arch as a "smol MoE".
Details:
- pretrained at context length 16384
- seen approx 20b tokens
- uses Claude3 tokenizer (as hf GPT2 tokenizer)
- hidden size 1024, 12 layers, 8 experts
achieves the following results on the evaluation set (_most recent dataset_):
- Loss: 3.0366
- Accuracy: 0.4514
- Num Input Tokens Seen: 1975517184
if I pretrain it further, other versions will be in new repos with incremented version (this is v0.13)
## Quick eval
Quick eval for: pszemraj/jamba-H1024_L12-v0.13-KIx2
hf (pretrained=pszemraj/jamba-H1024_L12-v0.13-KIx2,trust_remote_code=True,dtype=float), gen_kwargs: (None), limit: 0.9999, num_fewshot: None, batch_size: 8
| Tasks |Version|Filter|n-shot| Metric | Value | |Stderr|
|--------------|------:|------|-----:|----------|-------:|---|-----:|
|winogrande | 1|none | 0|acc | 0.5067|± |0.0141|
|piqa | 1|none | 0|acc | 0.5912|± |0.0138|
| | |none | 0|acc_norm | 0.5951|± |0.0138|
|openbookqa | 1|none | 0|acc | 0.1800|± |0.0172|
| | |none | 0|acc_norm | 0.2920|± |0.0204|
|lambada_openai| 1|none | 0|perplexity|103.1241|± |8.5843|
| | |none | 0|acc | 0.2502|± |0.0122|
|boolq | 2|none | 0|acc | 0.6196|± |0.0136|
|arc_easy | 1|none | 0|acc | 0.3836|± |0.0137|
| | |none | 0|acc_norm | 0.3694|± |0.0136|
## example outputs
![image/png](https://cdn-uploads.huggingface.co/production/uploads/60bccec062080d33f875cd0c/wky-qjUtS0AJ6YtIsJh3T.png)
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 80085
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 2.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Input Tokens Seen |
|:-------------:|:------:|:----:|:---------------:|:--------:|:-----------------:|
| 3.2013 | 0.4241 | 200 | 3.0653 | 0.4479 | 419430400 |
| 3.1976 | 0.8481 | 400 | 3.0434 | 0.4506 | 838860800 |
| 3.1485 | 1.2722 | 600 | 3.0375 | 0.4513 | 1258291200 |
| 3.1871 | 1.6963 | 800 | 3.0366 | 0.4514 | 1677721600 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1